Thaison Nguyen Option: Structural Faculty Advisor: Sustersic November 30, 2012

Technical Report III

Largo Medical Office Building

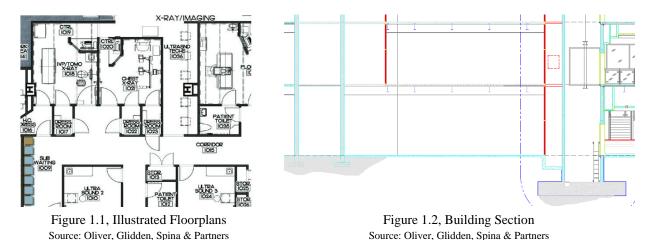
Largo, Florida

Table of Contents

Executive Summary	2
Building Overview	
Structural System	4
Framing & Lateral System	4
Floor System	5
Roof System	5
Lateral Force Resisting System	6
Wind Loads	6
Seismic Loads	6
Irregularity and Drift Analysis	7
Wind Irregularity	7
Seismic Irregularity and Building Period	9
Story Drift	
Lateral Spot Check/Design	
Conclusion	14
Appendix	
Appendix A: Floor Plans and Elevations	
Appendix B: Load Determination – Dead, Live, Rain	
Appendix C: Gravity Spot Check	
Appendix D: Wind Load Calculations	
Appendix E: Seismic Load Calculations	
Appendix F: Irregularity Analysis	
Appendix G: Lateral Spot Check/Design	
Appendix H: Structural Computer Modeling	

Executive Summary

The existing lateral force resisting system and lateral load distribution were studied in Technical Report III. Lateral system of the Largo Medical Office Building (LMOB) was evaluated for wind load irregularity effects, horizontal and vertical seismic irregularities. Also spot check/design was implemented to determine whether the current shear wall dimensions were adequate.


LMOB only experiences soft story irregularity, with the possibility for torsional irregularity. The soft story irregularity occurs on the first story. Occurrence of soft story in this location is caused by the higher floor-to-floor height, 16 ft. for the first story, while other stories only have a 14 ft. floor-to-floor height. Torsional irregularity is only a possibility because only a structural computer model was used. Hand calculations in torsional irregularity wasn't implemented because of the need to design all lateral force resisting members and time to finish the hand calculations. Another reason that torsional irregularity is a possibility is that the center of rigidity is different between ETABS output and the one determined by hand. Not only that, but the fundamental period determined by the hand calculations and computer modeling is significantly different. Thus the computer model can't be trusted.

As determined in hand calculations in Technical Report I, the fundamental period of LMOB is 0.66 seconds. There were changes to the lateral loads when the lateral system was downgraded to an ordinary reinforced concrete shear wall and revising gust factor. The reason for downgrading the lateral force resisting system is the realization that it is unlikely for a seismically inactive region to use seismic detailing. These changes modified the lateral loads, but the wind loads still control over the seismic loads.

Spot check/design was only done for the member with the highest base shear and overturning moment. All lateral force resisting members have stiffness based on their respective lengths. In the building, the member with the second longest length has the highest loads. Reason that the longest length member didn't have the highest load is the smaller torsion induced shear. Hand calculations indicate that the current shear wall dimensions are sufficient to resist the controlling wind load in the North/South direction.

Building Overview

Largo Medical Office Building (LMOB) is an expansion of the Largo Medical Center complex. Designed in 2007 and completed in 2009; LMOB is managed and constructed by The Greenfield Group. Located in Largo, Florida; the six story facility was designed to house improved and centralized patient check-in area. The facility also houses office space for future tenants, as well as screening and diagnostic equipment.

Patient privacy is a major concern for facilities housing medical related activities. Oliver, Glidden, Spina & Partners answered this by clustering the screening and diagnostic spaces close to the dressing areas (Figure 1.1). The architect went a step further, to preserve privacy by compartmentalizing the building's interior.

LMOB is a steel framed facility with ordinary reinforced concrete shear walls to resist lateral loads. The shear walls and structural columns rest on top of spread footings which are at least 27" below grade (Figure 1.2). LMOB's envelope consists of 3-ply bituminous waterproofing with insulating concrete for the roof; impact resistant glazing and reinforced CMU for the façade.

Structural System

Largo Medical Office Building is a 105' tall and 155,000 ft² facility which utilizes ordinary reinforced concrete shear walls and a steel frame.

Unique building components and site conditions not considered in this report includes:

- 1. Effects of drain placement on the rain load
- 2. Wind loading on the overhang (Figure 2.1)
- 3. Soil profile

Framing & Lateral System

The steel frame is organized in the usual rectilinear pattern. There are only slight variations to the bay sizes, but the most typical is 33'-0" x 33'-0". Please refer to Appendix A for typical plans and elevations. Girders primarily span in the East/West (longitudinal) direction. Only the overhang above the lobby entrance and loading area are girders are orientated. It is assumed that the

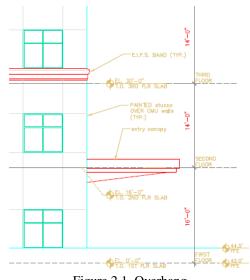


Figure 2.1, Overhang Source: Oliver, Glidden, Spina & Partners

columns, girders, and beams are fastened together by bearing bolts. As a result, the steel frame only carries gravity loads.

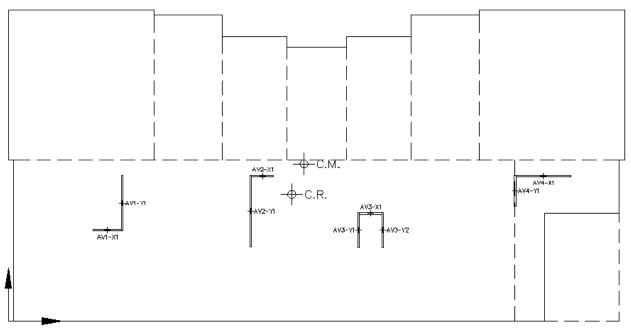
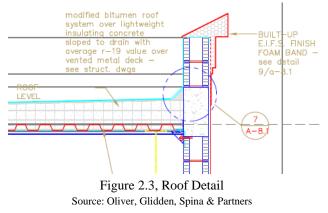


Figure 2.2, Shear Wall Locations


To deal with the lateral load, ordinary reinforced shear walls are used. The shear walls help the facility resist wind from the North/South and East/West direction. All shear walls are continuous and span from the ground floor level to the primary roof (86' above ground floor level). See Figure 2.2 for shear wall locations.

Flooring System

In general, the structural flooring system is primarily a 5" thick composite slab (Figure 2.4). On all floor levels, except for the ground, the composite slab spans 8'-3". To satisfy the 2-hour fire rating defined by the FBC, it is likely that the floor assembly received a sprayed cementitous fireproofing. Exposed 2" composite deck with 3" of normal weight (NW) topping only has a 1.5-hour rating, per 2008 Vulcraft Decking Manual.

Roof System

LMOB has three roof levels: main roof, east emergency stairwell roof, and the overhang over the main entrance. There is only one roof type for all three roof levels, consisting of a 3ply bituminous waterproofing applied over the insulated cast-in-place concrete (Figure 2.3). To ensure adequate rainwater drainage, the insulated cast-in-place concrete is sloped ¹/₄" for every 12" horizontal.

The insulated cast-in-place concrete was used in-lieu of rigid insulation with stone ballast. One reason is that the facility is in a hurricane zone. This means that loose material can potentially become airborne projectiles and cause damage when there is a hurricane. The insulated concrete has sufficient mass to resist becoming airborne in a hurricane. In addition, the added mass counters the uplift wind force.

Lateral Force Resisting System

Wind Loads

Method 2 in Chapter 6 of ASCE 7-05 was used to determine the Main Wind Force Resisting System (MWFRS) and wind load on the Components & Cladding (CCL). Story forces and overturning moments were determined by calculating the wind pressures and loads. Assumptions were made to simplify method 2, as follows:

- 1. Ignore the overhang
- 2. Connection between floor diaphragm and façade allows thermal induced movement
- 3. Due to multiple roof levels, that average roof elevation 95'-6" was utilized
- 4. 0.85 Gust factor was used, since diaphragm is rigid
- 5. Internal pressurization is unlikely due to use of impact resistant glazing
- 6. Type III for importance category

From the wind analysis, the MWFRS loads due to wind in the North/South direction controls over the East/West direction. Higher story shears, in the North/South directions, can be attributed to greater façade area. All wind calculations are available for reference in Appendix D.

LMOB is located in a suburban area, where most neighboring buildings are less than 30 ft. Only to the west are there tall buildings, namely the Largo Medical Center (highlighted blue in Figure 4.1). Though the parking garage is the other tall structure in the immediate vicinity of LMOB, the effects are neglected. The parking garage was built after LMOB was completed. As a result of the surrounding buildings, the site is classified as having wind Exposure Category B.

Figure 4.1, Neighboring Buildings Source: Google Maps

Seismic Loads

Equivalent Lateral Force method was used to determine the seismic loads on LMOB. Seismic load transfers from the floor diaphragms to the shear walls. The shear wall locations can be referenced in Figure 2.2. No seismic loads were transferred to the top roof, at 105', due to the lack seismically designed masonry structure supporting the diaphragms (Figure 4.2, on the following page).

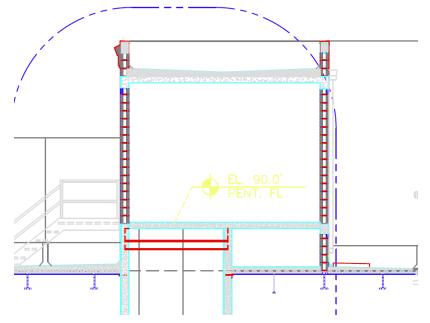


Figure 4.2, Non Seismic Design Top Roof Source: Oliver, Glidden, Spina & Partners

Table 4.1, Maximum Base Shear (V_n) and Overturning Moment (M_n) SeismicWindBase Shear (Kip)376.4Overturning23340.1Moment (Kip, ft)23340.1		
	Seismic	Wind
Base Shear (Kip)	376.4	916.2
Overturning Moment (Kip-ft)	23340.1	47192.8

Using ASCE 7-05 it was discovered that the facility doesn't have to resist significant seismic forces, approximately 376.4 kip. This translates to ~ 1.7% of the effective building weight. Live load due to storage, and dead loads determined previously in were used to calculate the effective building weight. Refer to Appendix E for more details. After analyzing both wind and seismic loads, it was found that the wind loading in the North/South direction is the controlling lateral scenario. See Table 4.1 for wind and seismic base shear and overturning moment. Due to Florida's low seismic activity but high hurricane risk it is logical that the facility experiences high wind loads when compared to seismic loads.

Irregularity Analysis

Wind Irregularity

Eccentricity between the center of mass (CM) and the center of rigidity (CR) affects the loads experienced by the shear walls. Torsion is present whenever there is an eccentricity between the CM and CR. LMOB has three types of floors, each with a distinct CM; see Table 4.2 (on the following page).

T	able 4.2, CM of Flo	oor Types	
Floor Type	Floor Levels	$X_{cm}(ft)$	$Y_{cm}(ft)$
А	0	110.07	59.34
В	1	114.69	58.72
C	2, 3, 4, 5	114.79	58.90

Assumptions were made to simplify and expedite the hand calculation process, and are as follows:

- 1. No mechanical or other large openings in shear walls
- 2. All shear walls have stiffness' proportional to their respective length
- 3. Shear walls resisting lateral load in the North/South direction are not connected to shear walls resisting lateral load in the East/West direction
- 4. Floor diaphragm concrete will crack before shear walls, due to exposure to both gravity and wind loads

Wind loads, determined in Technical Report I, were distributed to each lateral resisting element based on stiffness. Deep members had the greatest share of shear, primarily due to high stiffness. It was initially expected that the deepest member, AV2-Y1, would have the greatest shear. The hand analysis indicated that AV1-Y1 had greater shear, due to the torsion shear component. Go to Appendix F for more details on calculations.

	Table 4.3, N	Maximum Base She	ear
Lateral Force	Controlling	Maximum Base	Maximum Base Shear
Resisting Member	Wind Case	Shear (Kip)	per Length (Kip/ft)
AV1-X1	Ι	76.49	7.40
AV1-X1	II	325.00	15.42
AV2-Y1	Ι	304.42	11.27
AV2-X1	Ι	63.85	7.82
AV3-Y1	Ι	126.60	9.62
AV3-X1	Ι	63.35	7.53
AV3-Y2	Ι	121.65	9.24
AV4-Y1	Ι	84.03	7.20
AV4-X1	Ι	159.59	7.82

Each wind case was calculated, to determine the case and member with the highest base shear. Accidental torsion in Case II and Case IV was applied to maximize member base shear. Determined in Case I and Case III, the torsion shear component at max was only 25.5% of the direct shear, which is small. There is no possibility that a low stiffness lateral member will experience greater base shear, when compared to a higher stiffness lateral member. As a result, the accidental torsion was applied clockwise to increase base shear experienced by high stiffness members (AV1-Y1 and AV2-Y1). The maximum base shears and load case for each member can be referenced in Table 4.3.

Seismic Irregularity and Building Period

LMOB was evaluated for horizontal and vertical irregularity, though not required for seismic category A. A reason is the potential to move the facility to a more seismically active region, in the spring 2013 semester. By visual inspection facility's regular shape, continuous lateral system, and parallel lateral force resisting system eliminated the need to check the facility for horizontal irregularity (4) and (5). Vertical irregularities checks eliminated; due to the visual inspection; are vertical irregularity (3), (4), (5a), and (5b). Other horizontal and vertical irregularities were analyzed by both hand calculations and through the use of ETABS.

When analyzing the facility assumptions were made, and are listed below:

- 1. Floor diaphragm openings due to MEP are not significant and not included in diaphragm discontinuity irregularity analysis
- 2. Stiffness in soft story irregularity is inversely proportionate to the story height
- 3. Construction effects on stiffness was not considered

The rational behind assumption (2), is based on the equation: $K = 12EI / L^3$ (fixed-fixed member). Continuity of all lateral force resisting members translates to constant moment of inertia at all stories. As a result the stiffness equation's numerator is a constant and only the height (L) of the story has an impact.

		Table 4.4, 1	Re-Entrant C	orner Analysi	İS	
Floor	Building Di	mension w/o	Re-Entra	nt Corner	Externation	Darcontogo
Level	Re-Entrant	Corners (ft)	Dimens	ions (ft)	Externsion	Percentage
	Long Side	Short Side	Long Side	Short Side	Long Side	Short Side
0	197.51	73.59	28	40.83	14.2%	55.5%
1	225.51	115.43	2	2	0.9%	1.7%
2	225.51	115.43	2	2	0.9%	1.7%
3	225.51	115.43	2	2	0.9%	1.7%
4	225.51	115.43	2	2	0.9%	1.7%
5	225.51	115.43	2	2	0.9%	1.7%
Roof 1	225.51	115.43	2	2	0.9%	1.7%

Re-entrant corner, floor diaphragm discontinuity, mass, soft story, and torsional irregularity were analyzed according guidelines established in ASCE 7-05 Tables 12.3-1 and 12.3-2. At a quick glance of Table 4.4, LMOB appears to have re-entrant corner irregularity, but this is not

so, because both re-entrant corner extension percentage in the long and short sides must be greater than 15%. The max floor diaphragm discontinuity occurs at floor level 1 and is only 7.8%, primarily due to the two story lobby. This is nowhere close to the 50% threshold, which ASCE 7-05 would classify that floor diaphragm discontinuity exist. After comparing the values on Table 4.5 (located below) to ASCE 7-05 Table 12.3-1 and 12.3-2, there is soft story irregularity but no mass irregularity. The facility doesn't have extreme soft story irregularity because the K_i/K_{i+1} is greater than 60%. All hand calculation, pertaining to the seismic irregularity analysis, is in Appendix F.

	Table	e 4.5, Soft Story a	and Mass Irregu	larity Analysis	
Story	Story Height (ft)	$K \sim 1 / L^3$	K_i/K_{i+1}	K _i / K _{avg}	W _{eff,j} / W _{eff,i}
1	16	0.00024	67.0%	75.3%	101.7%
2	14	0.00036	100.0%	100.0%	101.4%
3	14	0.00036	100.0%	100.0%	101.8%
4	14	0.00036	100.0%	100.0%	100.2%
5	14	0.00036	100.0%		
6	14	0.00036			

Instead of using hand calculations to determine torsional irregularity, *ETABS* was used. The need to determine the effective moment of inertia of each member at each story will require the design of all lateral force resisting members. Long duration of the hand analysis is the main reason for not implementing hand calculations. To ensure that the *ETABS* result are accurate; the center of mass, center of rigidity, as well as the case I wind induced force on member AV2-Y1; will be compared with the hand calculations. For more details about the structural computer modeling and assumptions, see Appendix H.

	Table 4.6, Typical Floor Diaphragm Center of Mass and Rigidity						
	Han	d Analysis			Comp	uter Analysis	5
Center	of Mass	Center of	f Rigidity	Center of	of Mass	Center of	f Rigidity
X	У	Х	У	Х	у	Х	у
114.79	58.90	105.51	47.79	114.78	58.80	89.90	47.79

Table 4.7, Wind Case I Base	Shear of Member AV2-Y1
Hand Analysis	Computer Analysis
304.42 Kip	327.44 Kip

Evident in Table 4.6 and Table 4.7, the structural computer model is not entirely accurate. The structural computer model has a different center of rigidity from the hand calculation. An

impact of the center of rigidity difference is change in torsion induced shear and extreme torsional irregularity. Unlike the hand calculation, it was assumed that the shear walls are monolithically cast; meaning that the shear wall will act more like an angle/L-section. This is the reason for the change in center of rigidity.

Though the change in center of rigidity was expected, the significant difference between the building's fundamental period wasn't. When using ASCE 7-05 equation 12.8-9, the fundamental period is 0.66 seconds. ETABS determined the fundamental period to be 2.38 seconds, due to torsion. It was verified that the building mass and dimensions in ETABS is the same as the hand calculations. Since the period $T = 2\pi * (mass/stiffness)^{1/2}$, it is likely that the lateral force resisting element's stiffness is the culprit for the error.

It was decided that the ETABS model is not accurate and additional debugging of the structural computer model is required. Unfortunately, at this time it can't be determine whether or not the building has torsional irregularity.

Story Drift

Story drift, was evaluated to prevent damage of building components. Wind induced story drift controls over seismic story drift. There are two reasons for this; one is the higher wind loads. The other reason is that greater drift of the lateral force resisting system are permissible in seismic design, to facilitate energy dissipation.

Instead of determining the story drift by first designing each shear wall, it was assumed that the effective moment of inertia is 25% of the uncracked moment of inertia. Shear wall drifts was determine by subtracting the deflections at top and bottom of each story. The formula used to determine the top and bottom deflection is $\Delta_{dfl} = PL^3 / (12EI_{effective})$. Refer to Appendix F, for more details about the story drift calculations. The maximum story drift occurs at the first story (least stiff story) and is approximately 0.01. ASCE 7-05 Section CC1.2 dictates that the maximum allowable story drift shall be 0.48. From the comparison, between the maximum allowable story drift and actual maximum story drift, the building doesn't violate the serviceability criteria.

Lateral Spot Check/Design

The shear wall experiencing the largest base shear was selected to be designed and lateral system spot check. In addition, the design was checked with a computer model, *RAM*. Member AV1-Y1 was evaluated for flexure and shear due to wind loads, the controlling lateral load. Load combination $1.2D + L + 0.5L_r + 1.6W$ was used in designing the lateral force resisting member.

Shear wall AV1-Y1 was designed similar to a long flexural member as opposed to a deep beam, because the height-to-length ratio is greater than 4.

To reduce the number of design iterations assumptions were made during the design process and are as follows:

- 1. Shear walls take no axial loads
- 2. Reinforcement responsible for controlling thermal induced cracks don't contribute to strength
- 3. All vertical reinforcements are the same size
- 4. Two layers of flexural rebar
- 5. $\varepsilon_t = 0.005$ for flexural reinforcement furthest from the neutral axis

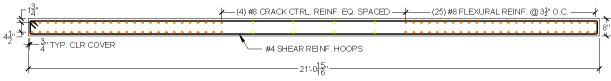


Figure 4.3, Flexural Reinforcement Design

Current shear wall, AV1-Y1, dimensions are sufficient to resist base shear and maximum moment. Top reinforcement is required, due to the likely hood that the wind load will reverse. The other reason is to strain the flexural reinforcement to 0.005, in order to use a $\Phi = 0.9$. Refer to Figure 4.3 for the flexural and crack control reinforcement. As for shear reinforcement hoops, these are not necessary at distances less than *d* from the face of support and where the shear is less than 183.3 Kips. However, a decision was made to place hoops at locations where shear reinforcement hoops are not required, to confine the concrete core and avoid possible rebar buckling during the construction process. All design calculations, pertaining to shear wall AV1-Y1's design is in Appendix G.

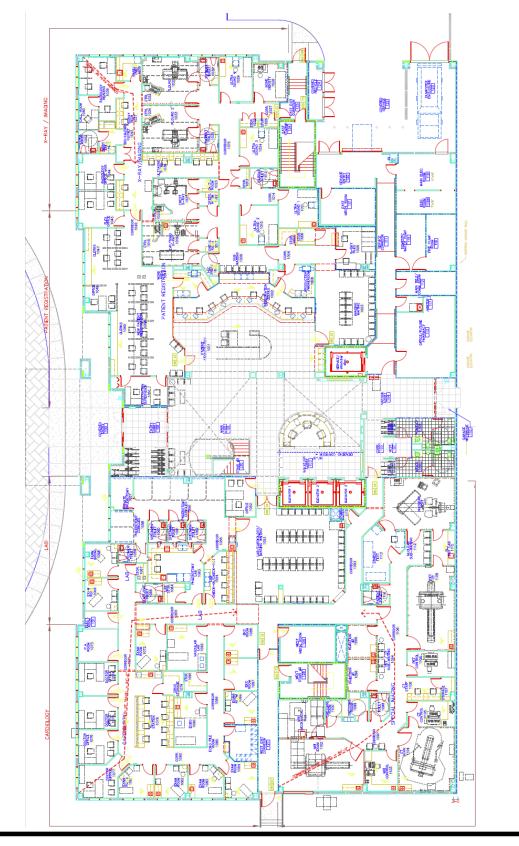
	Table 4.8, Wall Desig	n
Design Method	Hand	Computer
Flexural	Tension Zone: (50) #8 @ 3.5" O.C.	Tension Zone: (64) #8 @ 4" O.C.
Reinforcement	Compression Zone: (50) #8	Compression Zone: (0) #8

RAM's design of wall AV1-Y1 is logical, when comparing values in Table 4.8. Greater spacing between rebars and no compression rebar, in the computer design, necessitates additional reinforcement; as evident in the greater quantities of flexural rebar. Without top reinforcement the rebar furthest from the neutral axis will not reach a strain of 0.005, thus preventing the use of $\Phi = 0.9$.

The design procedure used for AV1-Y1 can be used most lateral resisting members except for AV2-Y1. With a height-to-length ration of 3.19, member AV2-Y1 must be designed as a deep beam (per ACI 318-11 Section 11.7.1), based on the strut-and-tie model.

Conclusion

Technical Report III studies the wind and seismic effects on the individual lateral force resisting members. Only the member with the largest base shear was designed, AV1-Y1. The building's story drift satisfies the maximum allowable drift limit H_{story} / 400. Both horizontal and vertical seismic irregularities were analyzed. LMOB has soft story irregularity and potentially torsional irregularity.


It is not well known whether or not LMOB has torsional irregularity, there are a number of reason for this. Hand calculations were not done for torsion irregularity, primarily due to the need to design all the lateral force resisting members and duration of the hand analysis. Though an ETABS was used to evaluate the building for torsional irregularity, the result of the ETABS model should not be used. The ETABS model has a greater eccentricity between center or rigidity and center of mass when compared to the hand calculations done previously. This caused a 2.38 second fundamental period and greater base shear in member AV2-Y1. Hand calculations yielded 0.66 second fundamental period and 304.42 kip base shear in member AV2-Y1. Additional debugging of the structural computer model is necessary to achieve an accurate analysis and determine whether LMOB has torsional irregularity.

Using the hand calculations in this Technical Report and previous ones, member AV1-Y1 was designed to the controlling lateral load (wind). Due to a height-to-width ratio greater than 4, member AV1-Y1 was designed as a flexural member instead of a deep beam with strut-and-tie. Lateral member AV1-Y1 experiences a base shear of 325 kip of base and an overturning moment of 16608.2 kip-ft. According to hand calculations (25) #8 rebar in each of the two layers of flexural reinforcement is required along with compression reinforcement, to resist the loads mentioned above. The purpose of the compression reinforcement is required to yield the reinforcement in tension. Unlike the torsional irregularity analysis, *RAM* generated a design AV1-Y1 similar to the hand calculation.

Figure AA.1, First Floor Plan w/ Tenant Build-Out

Source: Oliver, Glidden, Spina & Partners

Appendix A: Floor Plans & Elevation

Page **15** of **69**

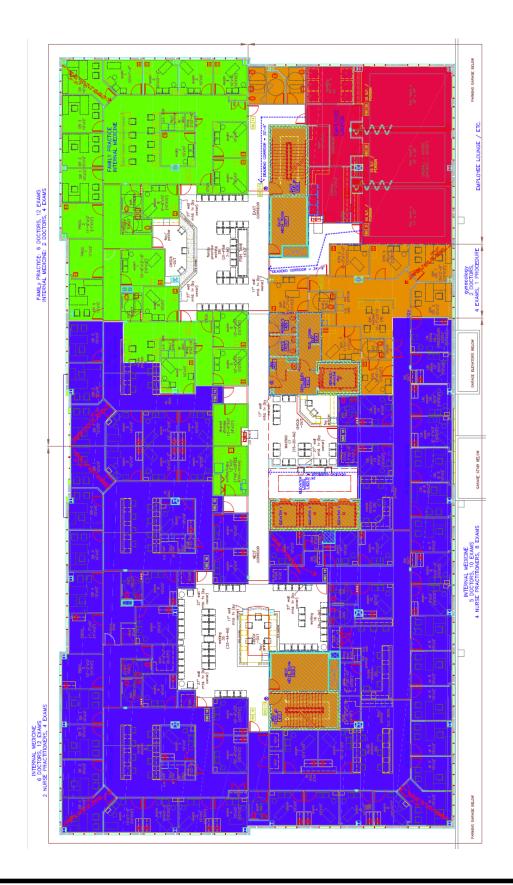
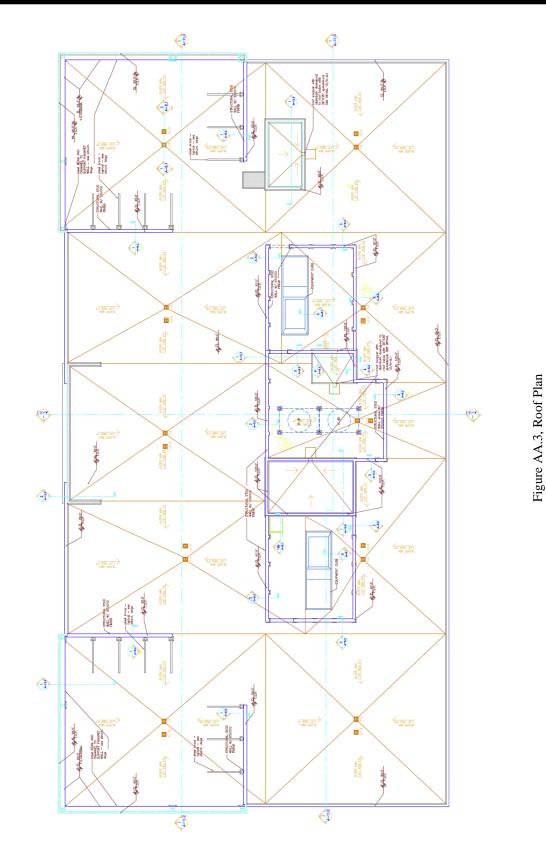



Figure AA.2, Typical Upper Floors Source: Oliver, Glidden, Spina & Partners

Source: Oliver, Glidden, Spina & Partners

Page **17** of **69**

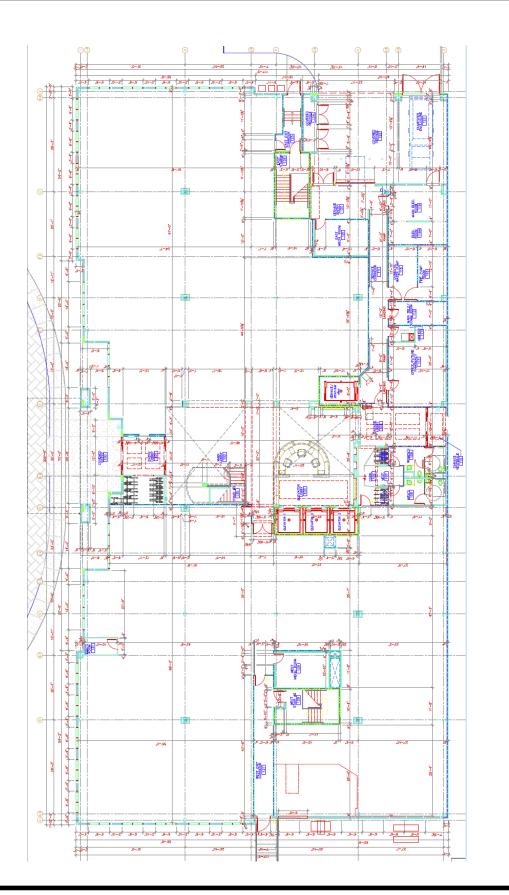
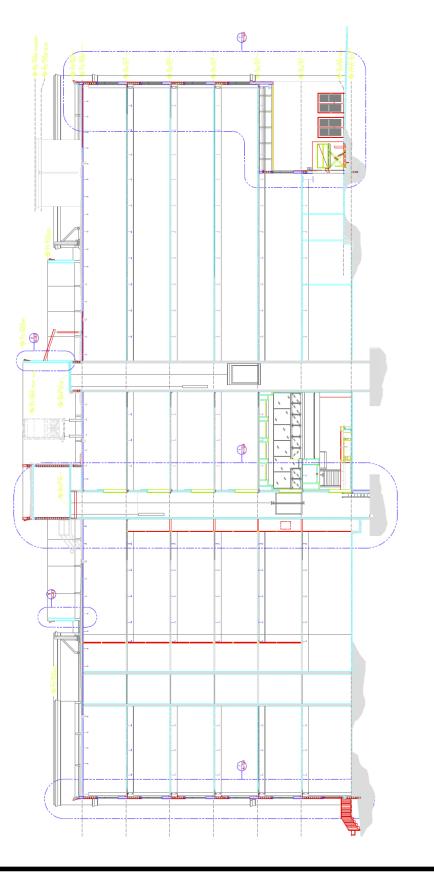
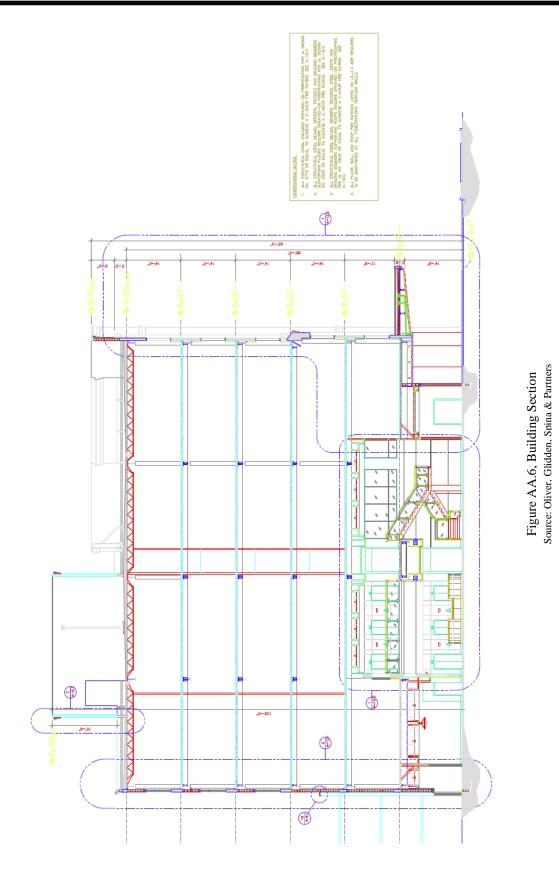




Figure AA.4, Typical Column Layout Source: Oliver, Glidden, Spina & Partners

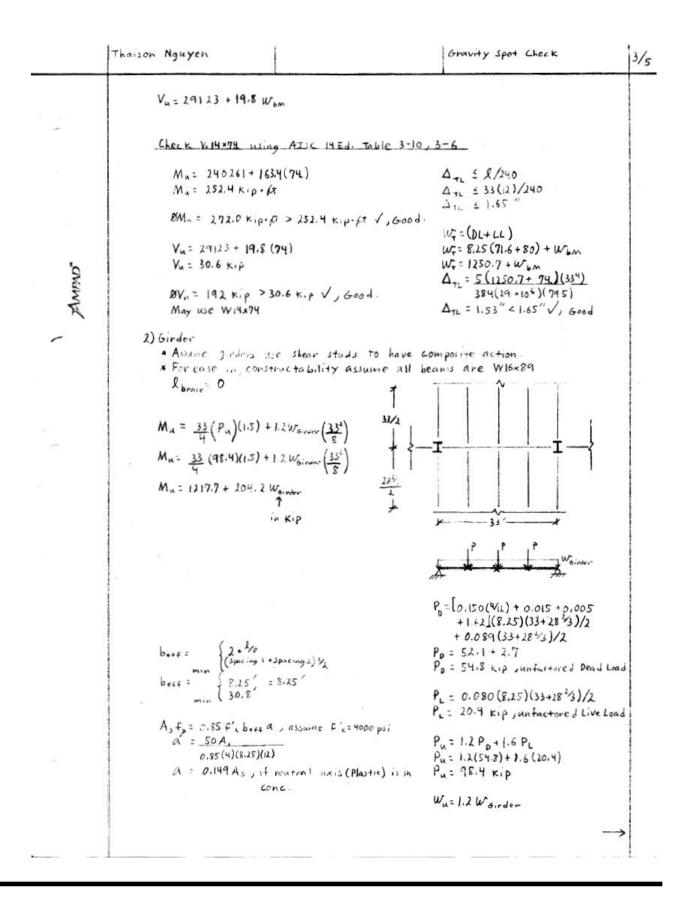
Page **20** of **69**

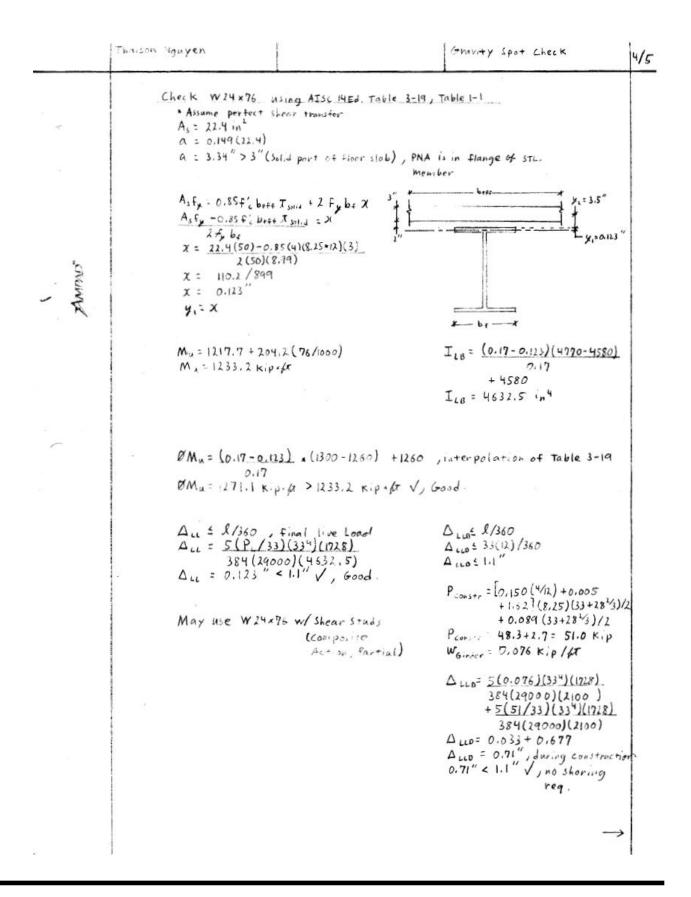
Appendix B: Load Determination Dead, Live, Rain

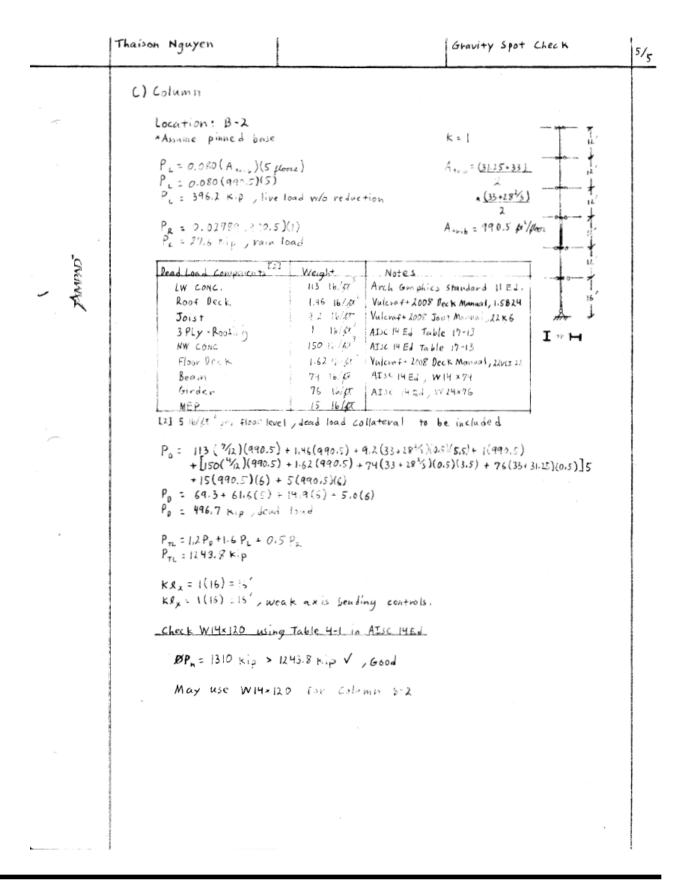
```
Thaison Ngayen
                                                                    Load Determination - DEAD, LIVEI/e
                                                                                          RAIN
                Floor Level Agross (4t) A + opening (4t) A + in (4t)
0 24153.00 293.00 724.00
                                         1571.00
                                                       609.00
                    ł
                            26440.00
                     2
                                          293.00
                             26440.00
                                                       609.00
                            26440.00
                                          293.00
                     3
                                                       509.00
                             26440.00
                     ч
                                          293.00
                                                       509.00
                                          293.00
                    5
                            26440.00
                                                       609.00
                  Roof [1]
                                        N/A
                            26440.00
                                                       204.00
               [1] Does not include stairwell openings
               [2] Stairs extending to roof top has a roof
  "CAMPAD"
                 story
                           Africade (ft2)
                                        A grating (ft)
                           11093.33
                   1
                                         1588.00
                   2
                           9706.67
                                         1920.20
                            9706.67
                                         1846.20
                   3
                   ч
                            9706.67
                                         2681.60
                   5
                            9705.67
                                         2780.40
                    6
                            9706.67
                                         2793.40
                 Roo f [3]
                           5079.00
                                         N/A
               [3] Roof has partitions enclosing Mechanical equipment and stairwell
               ** 5 16/ft dead load collateral .
                               Weight
                Materia
                                                Notes
                               150 16/ja
113 16/ja
                  NW- CONC.
                                             AISC MEJ. Table 17-13
                  LW. CONC
                                            Arch. Graphics Standards 11Ed.
                               1.33 16/px3
                  VCT
                                            Arch Graphics Standards 11Ed.
                               10 16/17
                  Leramic/
                                            AISC 14EH. Table 17-13
                  Porcelain
                  Tile
                                    16/pt AISC 14 Ed. Table 17-13
                  3 Ply Roofing 1
                  Laminated
                              8.2 16/05
                  Glass - 0.8"
1
                                    16/15
                  MEP
                               15
                  Partitions
                              15
                                     10/11 ASCE 7-05 4.2.2
             a) Floor / Deck Thickness
               1) Level: 0
                  Tfloor = 4", solid reinf. conc.
                2) Level: 1->5
                  dock = 2", assume metal deck has equal size corregations
                  JELGEN = 5
                  Theory eg = I floor - dder /2 = 4", use to determine conc. weight
                                                                                               ---->
```

```
Load Determination - DEAD, LIVE 1/5
        Thaison Nguyen
                                                                                                    RAIN
               3) Level: Roof
                  dueck= 1.5", assume metal deck has equal size corregations
                 T floor = 10 1/8" -> 3 1/16"
                 X floor, ang = (10 1/8+3 1/6) /2
                 T flour, ang = 7"
                 Talour, eq = I floor, avg - dury 2 = 6.25", use to determine conc. Weight
           b) Floor Level Dead Weight W/o structural steel, Metal Deck, Flooring, Facade
CAMPAD
              1) Level: 0
                 DL = 0.150(T = 100 (A gross) + 0.015 (A gross - A stopping - A stair) + 0.005 (A gross)
DL = 0.150 (4/12) (24153) + 0.015 (24153 - 293 - 724) + 0.005 (24153)
                 DL = 1675.5 Kip
              2) Level: 1
                                  O.150 (Itelacr, eq) (Agross - Afloppening) + O.015 (Agross - Afloppening - Astains)
                 DL =
                 + 0.005(Agross)
DL = 0.150(412)(26440-1571)+0.015(26440-1571 - 609)
                         +0.005(26440)
                 DL = 1739.6 Kip
               3) Level: 2→5
                  DL = 0.150 (Ifloor, eq) (Agress - Aflopening) + 0.015 (Agross - Aflopening - Astain)
                         + 0.005 (Agross)
                  DL = 0.150(4/2)(26440-243) + 0.015 (26440-243-609) + 0.005 (26440)
                  DL = 1822.6 Kip floor level
               4) Level: Roof
                  DL = 0.113 (Ither, +4) (Agross) + 0.015 (Agross = 0.20) + 0.001 (Agross)
                  +0.005 (A grou)
DL = 0.113 (625/12) (26440) + 0.015 (26440) (0.20) + 0.001 (26440) +0.005 (26440)
                  DL = 1794.1 Kip
```

```
Load Determination - DEAD, LIVE 3/5
        Thasah Nguyen
             C) Dead Weight of Flooring
                 Floor Level
                                                                                        2 or 3 or 4 or 5
                 Flooring
                                   VCT
                                                             VCT
                                                                                        VGT
                                              Ceramic
                                                                         Cenamic
                                                                                                      Ceramis
               Area (62) 1410
                                             2841
                                                            531
                                                                          653
                                                                                       .531
                                                                                                      339
                * Other areas have exposed conc.
                1) Level: O
                   DL = 1.33(1410) + 10(2841) = 30.3 Kip
                2) Level: 1
"annard
                   DL = 1.33 (531) + 10 (653) = 7.2 Kip
                3) Level: 2 > 5
                   DL=1.3(531)+10(339) = 4.1 Kip/floor level
             d) Dead Weight of Facade Envelope (by story)
                 i) Story: 1
                     \begin{aligned} & \text{DL} = 0.150 \left( A_{\text{futable}} - A_{\text{glating}} \right) + 0.0082 \left( A_{\text{glating}} \right) \\ & \text{DL} = 0.150 \left( 11093.33 - 1588.00 \right) + 0.0062 \left( 1588.00 \right) \end{aligned} 
                    DL = 1438.8 Kip
                 2) Story: 2
                    DL = 0.150(9706.67-1920.20) + 0.0082(1920.20)
                    DL = 1183.7 Kip
                 3) story: 3
                    DL = 0.150 (9706.67-1846.20) + 0.0082 (1846.20)
                    DL = 1194.2 Kip
                 4) Story : 4
                    DL = 0.150(9706.67-2681.60) + 0.0082 (2681.60)
                    DL = 1073.7 Kip
```


	Thaison Nauyen Loud Determination - DEAD, LIVE RAIN	4,
	5) Story: 5	
	DL = 0.150 (9706.67 - 2780.40) + 0.0082 (2780.40) DL = 1061.7 Kip	
	6) Story: 6	
	DL = 0.150 (9706.67-2783.40) + 0.0082 (2783.40) DL = 1061.3 Kip	
_ONAWA	7) Story : Roof	
N.K.	DL = 0.150(5079.00) DL = 761.85 Kip	
	e) Live Load w/o Live Load Reduction	
-	Room Type Stairs Lobby & First Floor Corridor Corridor Above First Floor Ordinary Flat Roofs Lobby 20 Lobby & First Floor 20 Notes ASCE 7-05 Table 4-1 Roofs 20	
	* Partitions : 15 16/102 , per ASCE 7-05 4.2.2	
	1) Level : O	
	LL = 0.100 (Agross - A fromming - A stairs) + 0.100 (Astairs) LL = 0.100 (24153 - 293 - 724) + 0.100 (724). LL = 2313.6 Kip	
	2) Level:	
	LL = 0.080(26440 - 1571.00 - 609.00)+0.100 (609.00) LL = 2001.7 Kip	
	3) Level : 2 -> 5	
-	LL = 0.080(26440-293.00-609.00) + 0.100(609.00) LL = 2103.9 Kip	
		*


	Thasson Nguyen		Load Determination	- DEAD, LIVE RAIN	5/5
	f) Rain Load Rainfall Rate(I):4,5	" per hour (100 year return Plumbing Code 2009 Ap	period); per I pendix B, Asce7-	nternational 05 C8:5	
		(A) = 52 * 60.17 = 3128.7 $(Q) = 0.0104(A)(I) = 146.42$ $(3)''$ $1.738'', interpolation of$, per ASCE 7-05 C8	.3	
ZAMPAO"	$R = 5.2(d_{3} + d_{h})$ R = 5.2(3.63 + 1.738)	00f live load=20 10/62")			
		*			
				>	


Appendix C: Gravity Spot Check

	Thaison Nguyen	Ghavity Spot Check	ļ
-	MemberTypicalTypicalLocatiTypeSpain (μ)Spacing(μ)Bl > BJBeam338.25Bl > BJGirder3333BJ > CJJoist28.675.5Bl > BJ	L L	
	a) Roof and Floor Deck, Joists		
	Load combination : 1.2D+1.6L+0.5(Ly or R	lors)	
animp	Roof Deck Floor Deck Joint $(s_{pm,n}(p)) = 5.5$ 8.25 28.67 (pr) = N/A N/A 5.5 (pr) = 5.5		
	[1] Assume 3 span decks		
~	1) Roof Deck * Assume 2 hr fire rating. Total Load (TL) = DL + LL + R TL = 79.9 + W beck + 27.98 TL = 107.9 16/fr ² + W brock	DL = 0.113 (6.25/2) + 0.015 + 0.001 + 0.005 + Wpeck DL = 0.0799 Kip/Gr + Wpeck DL = 79.9 16/Gr + Wpeck	
	Check 1.5B24 (asing Valena F+ 2008 Manual)	* Since roof live load = 2016/ft*	
	Max 3DI Span = $5^{-10''} > 5^{-6''}\sqrt{,600d}$. Max Allowable Load = $12^{\frac{1}{2}} \frac{16}{6t^2}$ TL = $107.9 + 1.46$ TL = $109.4 \frac{16}{6t^2} < 128 \frac{16}{6t^2}\sqrt{,600d}$	Is smaller than Rain load (27.98 16/82) and un likelines of work performed on roof during rain - Use Rain load	
	Load Causing $1/180 = \frac{4}{3} + 90$ Load Causing $1/180 = 120 \ 1b/p^2 > 109.4 \ 1b/p^2 $ Good +Un-protected deck is rated up to 2 hrs $$, G	Plaster Ceiling	
	May 1.5 B24		
	2) Floor Deck * Assume 2hr fire rating * Assume floor deck is composite type.		
	LL= 100 16/ft ² , areas close to stairs		
	Check 24LT22 using Valcraft 2008 Manual Weight of deck = 1.62 16/62 Max SDI span = 8'-11" > 8'-3" V, Good Max Superimposed Live Load = 153 16/62"	4	

	Tha.son Nguyen	Gravity Spot Check
	· Use Conventitions or sprayed fiber fir to achieve 2 hr rating	e protection
	May use 2VLI22 w/ either cementitous	or spray fiber protection.
-Oving	3) Jowts Wu = 1.2 DL + 0.5 R Wu = [1.2(71.5 + WJowt) + 0.5(27.89)] 5.5 Wu = [99.8 16/64 + 1.2(UJoint] 5.5 Wu = 548.9 16/64 + 6.6 WJoist Check 22K6 Using SJI Economy Table * Assume 2 hr fire rating	DL = 0.150 (4/2) +0.015 +0.005 + $W_{dec.n} + W_{30irt}$ DL = 70 16/pt + 1.46+ W_{30irt} DL = 71.5 16/pt + W_{30irt} + Since roof live load = 20 16/pt ² is smaller than Rain load (27.89 16/pt ²) and unlikeliness of work performed on roof
	Wu = 548.9 + 6.6(9.2) , Wroint = 9.2 16/12 Wu = 609.6 16/17	during rain - use Rain load * Servicability Criteria
	Wu, capacit, = (29-28.67) (640-597) + 597 Wu, capacit, = 611.2 16/62 > 609.6 16/62 J, Good	Δ ≤ \$/100, supporting Non Plaster ceiling
-	LL CAPACITY = [(29-2567)(328-295) + 295] 36980 LL CAPACITY = 611.8 16/62 > 27.89(5.5)	
	611, 8 16/6r > 153.4 16/6r V, Good	
	* Use spray applied fire resistive mater to achieve 2hr. rating , per SJI	ials (ex. Cementitious or fiber)
	May use 22K6 w/ spray applied fir	e resistine materials
	b) Beam, Girders	
	Load Combination: 1.20+1.62+0 - (L+ or R *Assume beams and girders are pinned connect	
	1) Beam $W_{u} = [1.2(DL) + 1.6(LL)] * Spacing of bM W_{u} = [1.2(DL) + 1.6(E0)] * 8.25 + 1.2(W_{bm})W_{u} = 1765 \cdot 16/\alpha + 1.2W_{bm}M_{u} = W_{u}g^{2}/8M_{u} = (1765 + 1.2W_{bm})(33^{2})/8M_{u} = 240251 + 163.4W_{bm}$	$DL = 0.150(W_{11}) + 0.015 + 0.005 + W_{bm} + W_{beck}$ $DL = 71.6 \ 16$
	$V_u = W_u g/2$ $V_u = (1765 + 1.2 W_{uv})(33/2)$	

Appendix D: Wind Load Calculations

~	Importance Importance Exposure Cate Mean Height	Factor (I) : 1.1	I, ASCE 7-05 7 15, ASCE 7-05 70 3, ASCE 7-05 § 7,5	ble 6-1		
	Building Face Assuage (172)		h East West	4 1		
					nd floor diaphragm vill crack first	
'n		, ASCE 7-05				
DAMPAD	Component Kd	0.85 0	 A second sec second second sec	Table 6-4		
	[1] Components Height (ft)	and Cladding	K.	Notes]	
	in grin carry	Case I:CCL	Case II : MWFRS	10.05		
	≤ 15	0.7	0.57	ASCE 7-05 Table	6-3	
	20	0.7	0.62			
	25	0.7	0.66			
	30	0.7	0.7			
	40	0.76	0.76			
	50	0.81	0.81			
	60	0.85	0.85			
	70	0.89	0.89			
	80	0.93	0.93			
	90	0.96	0.96			
	100	0.99	0.99			
	140	1.04	1.04			
	$GC_{pi} = \pm 0.18$ $\alpha = \begin{cases} 0.1 + Lec \\ 3' \end{cases}$ $\alpha = \begin{cases} 0.1(1)7 \\ 3 \end{cases}$ $\alpha = \begin{cases} 0.1(1)7 \\ 3 \end{cases}$	ASCE 7-05	Figure 6-5 Dimension , A		e 6-17	
	$a = 11.74'$ Wind Perpend $3(\phi\tau)$	isalar to: 1	North/South Wall 229.5	East/West Wal		

Town		Thaison Nouven		Wind Load	
$\begin{aligned} \begin{array}{llllllllllllllllllllllllllllllllllll$		L/B Distance from Windward Edge	1.95 6.51	[0,95'-6"] [195'-6", [191'-0 191'-0") 00	ASCE7-05 Fig.6-6 , ASCE7-05 Fig.6-6, §6.5.11.3
$\frac{ GC_{p,cCL} _{0.6} _{0.6} _{0.7} _{ _{0.7} _{1} _{0.7} _{1} _{0.4} _{1.6} _{2.3} _{ASEE7-05}Fig.6-17 }{Building Natural Evequency (n.) ~ 100 / Mean Height, ASEE C6.5.8, Eq. C6-17Building Natural Evequency (n.) ~ 1047Thy subwedged = 75 / Aeigt = 86) = 0.87 sec, per ASEE7-05 Eq. C6-18Thy avg = 100 / (height = 50 = 1.16 sec, per ASEE7-05 Eq. C6-17)G_{\pm} = 0.85, convervative rigid diaphragms\eta_{\pm} = 0.00256 \text{ K}_{\pm} \text{ K}_{\pm 1} \text{ K}_{4} \text{ V}^{2} \text{ J}, see excel table following this pageq_{h} = 0.00256 \text{ K}_{\pm} \text{ K}_{\pm 1} \text{ K}_{4} \text{ V}^{2} \text{ J}, see excel table following this pageq_{h} = 0.00256 \text{ (0.49)}(1)(0.85)(130^{3})(1.15); leeward and side walls\eta_{h} = 41.9 \text{ Ib}/\text{A}^{2}P_{mwEAS} = qG_{c}C_{p} - q_{i}(GC_{pi}), q_{i}=q_{h} for conservative internal pressuritation.P_{ccL} = q(GC_{p}) - q_{i}(GC_{pi}), q_{i}=q_{h} for conservative internal pressuritation.P_{sce} = \sum Wind Load at floor displaragmV_{host, wind \pm North/South Wall} = 49192.5 \text{ Kip}-\text{At}M_{tot overturn, Wind \pm North/South Wall} = 47192.5 \text{ Kip}-\text{At}$	ZWARD.	Wall Windward Leen Zone 4 5 4 Area (fr ²) 19170 2243 19190 GCP, CCL 0.6 0.6 0.7 Wall Perpendicular to: Ea Wall Windward Leen tone 4 5 4	Mard Side 5 4 5 1243 8715 2243 18 1 0.7 1 0 st and West Facing Ward Side 5 4 5	Roo-f 3 1 2 3 1845 5941 1654.4 1.6 2.3 Asce 7-0 1.8 2.3 Asce 7-0 1.8 No No Roo.f 1 2 1 2 3	5 Fig 6-17
$q_h = 41.9 \ 16/4t^2$ $P_{mWFRS} = qG_FC_P - q_i(GC_{Pi})$, $q_i = q_h$ for conservative internal pressuritation $P_{ccL} = q(GC_P) - q_i(GC_{Pi})$, $q_i = q_h$ for conservative internal pressuritation * See excel table following this page for MWFRS and CCL Wind loads. $V_{base} = \sum Wind Load at floor disphragm$ $V_{base, wind \pm North/South Wall} = 916.2 \ Kip$ $V_{base, wind \pm East/West Wall} = 363.3 \ Kip$ $M_{tot overturn, wind \pm North/South Wall} = 47192.5 \ Kip-4t$ $M_{tot overturn, wind \pm East/West Wall} = 18152.9 \ Kip-4t$		GCDJCCL 0.6 0.6 0.7 Building Natural Frequency Building Natural Frequency Tnj.comorbond = 75 Abeigt Tnjavg = 100 / Lheight = 5 Gq = 0.85 , concervative Jz = 0.00256 Kz Kzz Kd V	$(n_1) \sim 100$ /Mean ($(n_1) \sim 1.047$ $(n_1) \sim 1.047$ $(n_2) \sim 1.047$ $(n_3) \sim 1.047$ $(n_1) \sim 1.047$	0.9 1.6 2.3 ASCE7-0 teight , ASCE C6.5.8 , per ASCE7-05 Eq C6 ASCE7-05 Eq C6-1' table following this	Eq C6-17 - 18 7
Verse, wind I North/south Wall = 916.2 Kip Verse, wind I East/West Wall = 363.3 Kip M tot Overturn, wind I North/South Wall = 47192.8 Kip-ft M tot overturn, wind I East/West Wall = 18152.9 Kip-ft		$q_h = 41.9 \ 16/4x^2$ $P_{mWFHS} = qG_FC_P - q_i(G_P)$ $P_{ccl} = q(GC_P) - q_i(GG)$ * See excel table follow $V_{have} = \sum Wind Load all$	Cpi), qi=qh Cpi), qi=qh fo cung this page f I floor diaphragm	for conservative inter in conservative intern ion MWFRs and CCL	al pressurization
		Vease, wind I North/South Wa Vease , wind I East /West Wal M tot Overturn , wind I Nort M tot overturn , wind I East /	H = 916.2 Kip I = 363.3 Kip K/South Wall = 47192 West Wall = 18152	5 Kip-47 9 Kip-47	*

																			Moment (kip-ft)	Wind Perpendicular to East/ West Wall	00.00	790.87	1553.67	2440.65	3387.61	4380.35	4080.71	1519.07
		q _I (GC _{pI}), Conservative								7 6.4	±0.5								Story Overturning Moment (kip-ft)	Wind Perpendicular to North/ South Wall	0.00	1937.85	3722.82	5776.66	7947.72	10208.27	14490.78	3108.66
			of	Cp =0.9 Cp = 0.18						22 02 6 44							-		ear (kip)	Wind Perpendicular to East/ West Wall	363.28	337.85	288.42	236.63	181.16	122.76	61.92	14.47
es (lb/ff ²)	MWFRS	ۍ ۲	Roof	Cp = 0.3 Cp = 0.5						40.60 47.70							-	External Wind Forces	Story Shear (kip)	Wind Perpendicular to North/ South Wall	916.18	853.41	732.30	608.20	476.92	339.89	198.10	29.61
Design Wind Pressures (lb/ft ²)		dGlCp	Side	B/L = 0.51						17 70 24 04							-	Exte	iaphram (kip)	Wind Perpendicular to East/ West Wall	25.43	49.43	51.79	55.47	58.41	60.84	47.45	14.47
			Leeward	B/L = 1.95 B/I						10.60							-		Wind Load on Floor Diaphram (kip)	Wind Perpendicular to Wind Porth/ South Wall	62.76	121.12	24.09	131.29	137.03	141.78	168.50	29.61
			Windward		16.39	17.83	18.98	20.13	21.86	23.29	24.44	25.59	26.74	27.61	28.47	29.91			M	Wind Perj North/ 5	ø	12	12	ţ	t)	14	ţ	2
	Velocity Pressure q _z	(Ib/ff ²)	MWFRS		24.1	26.2	27.9	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0			Mid	Elevation (ft)	8	23	37	51	65	62	95.5	
	Velocity P	(qj)	CCL		29.6	29.6	29.6	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0			Elevation	(t)	0.0	16.0	30.0	44.0	58.0	72.0	86.0	105.0
	Height (ft)				<u>≤</u> 15	20	25	30	40	50	60	70	80	6	100	120			Floor Level		0	÷	2	m	4	5	Roof 1	Top

						esign Wind F	Design Wind Pressures (lb/ft ²)	fft ²)				
Height (ft)	Velocity P	Velocity Pressure q _z						CC				
	(II)	(lb/ft²)			d(0	SCp), Wind Pe	erpendicular to	q(GCp), Wind Perpendicular to North/South Wall	n Wall			q _I (GC _{pI}), Conservative
•	CCL	MWFRS	Wind	Windward	Leev	Leeward	ίΟ.	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
<u>< 15</u>	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.76	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	20.24	A1 07	20.24	11 07	37 GO	66 00	06.30	7 E.A
09	35.9	35.9	21.57	21.57	C-27		C.67	0. +	00.10	66.00	00.00	±0.2
02	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
06	40.6	40.6	24.36	24.36								
100	41.9	41.9	25.12	25.12								
120	44.0	44.0	26.39	26.39								
						esign Wind F	Design Wind Pressures (lb/ft ²	(1 -)				
Height (ft)	Velocity P	Velocity Pressure q _z						CCL				
	(II)	(Ib/ff ²)			d(GCp), Wind P	erpendicular	q(GCp), Wind Perpendicular to East/West Wall	Wall			q _I (GC _{pl}), Conservative
•	CCL	MWFRS	Wind	Windward	Leeward	vard	ίΟ.	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
<u>≤</u> 15	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.76	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	20.21	A1 87	20.34	41.87	37 68	66.00	06 30	7 E.A
60	35.9	35.9	21.57	21.57	0.07	5	0.07	5	00.10	00.00	00.00	F0
70	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
06	40.6	40.6	24.36	24.36								
100	41.9	41.9	25.12	25.12								
120	44.0	44.0	26.39	26.39								

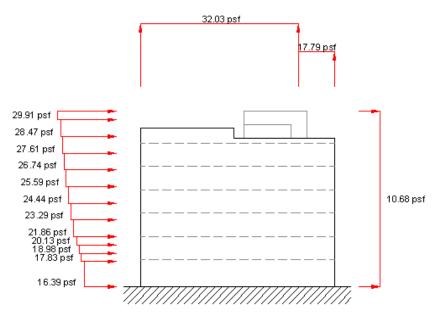


Figure AD.1, MWFRS North/South Wind Load Distribution

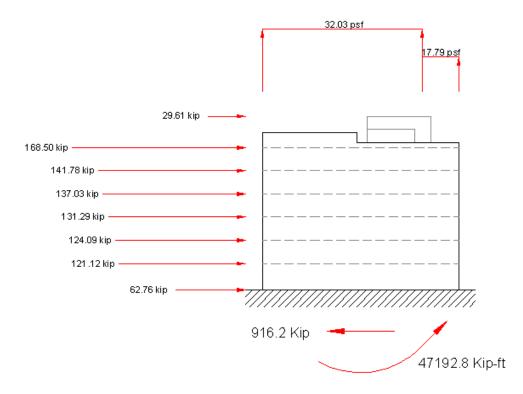


Figure AD.2, MWFRS Loads - North/South

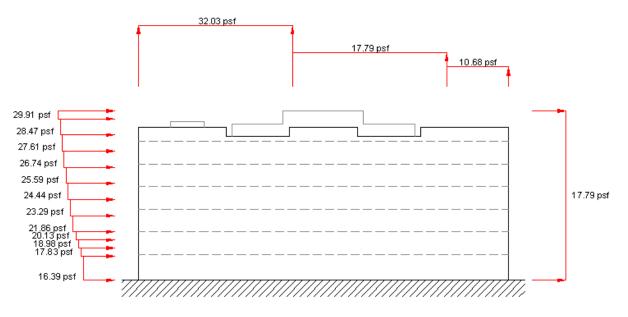


Figure AD.3, MWFRS East/West Wind Load Distribution

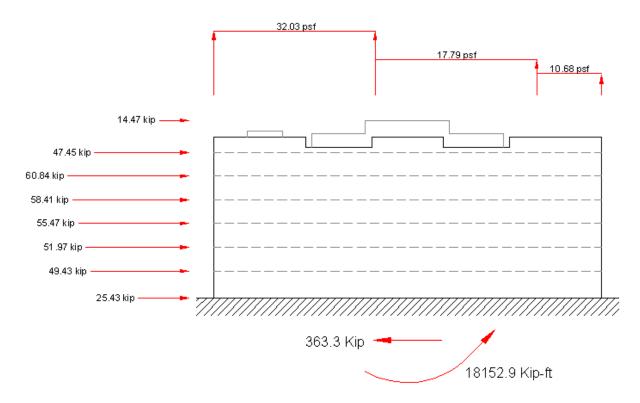


Figure AD.4, MWFRS Loads - East/West

Appendix E: Seismic Load Calculations

```
Thaison Nguven
                                                                              Seismic Loads
                                                                                                                     1/4
             Importance Category : III , ASCE 7-05 Taule 1-1
             Importance Factor: 1.25 , ASCE 7-05 Table 11.5-1
             Site Class : D , ASCE 7-05 $ 11.4.2, 20.3.3 ; Table 20.3.1
             *** Assume ordinary reinforced concrete shear walls -> Lateral system
             a) Effective Building Weight (Wx = DL+0.25 LL)
                1) Level: 1
                                                                              DL BM = WBM + (Agross - Aflopening - Astir)
                   DL = DL stat + DL deck + DL on + DL sinder + DL steering
                   + DL_{envelope}
DL = 1675, 5 + <u>1.62</u> (Agross - A flopening - Astair)
                                                                                     Spacing
CIVAMP
                                                                              Wan = 74 16/pt, W14×74 from
                                  1000
                                                                                              spot check
                               + 217.6 + 74.8 + 7.2 + \left(\frac{1138.8 + 1183.7}{2}\right)
                                                                              DL DM - 74 (26440-1571-609)
                                                                                     8.25
                   DL = 1675.5 + 39.3 + 217.6 + 74.8 + 7.2 + 1311.25
                                                                              DL ... = 8.97 (24260)
                   DL = 3325.7 Kip
                                                                              01 m = 217.6 Kip
                   LL = 2001.7 Kip, value for Load Determination
                                                                             DLoinder = Loinder Weinder
                                       -DEAD, LIVE, RAIN section
                                                                             Weinder = 76 16 /ft , W24 × 76 from
                                       in the Appendix.
                                                                                                  Spot check
                                                                             DLGinder = [31.25(2) + 33(4)+32 3]
                   W. = 3325.7 +0.25(2001.7)
                                                                                        +[29.25(2)+33+(33-9)
                   W. = 3826.1 Kip
                                                                                        + 32 % + (33 - 8.5)+ 33(4)]
                                                                                        * 76
                                                                             DL Girder = [680 + 304.2] = 76
                                                                             DLoirder = 74.8 Kip
                2) Level: 2-25
                   DL = { 1822.6 + 1.62 (Agross - A flopening - Astain)
                                                                             A gross - Attopening - Astair
                                  1000
                                                                                = 26440-293-609
                                + 8.97 (Agross - A flopening - A stair)
+ 76 (680 + 304.2 + 29.25 + 32 %)
                                                                                 = 25538 fz<sup>2</sup>
                                 1000
                                + 4.1 } 4 + 1 (183.7) + 1194.2
                                + 1073.7 + 1061.7 + 1 (1061.3)
                   DL = 8706,5 + 4452.3
                   DL = 13158.8 Kip
                   LL = 2103.9(4) , value from Load Determination - DEAD , LIVE, RAIN section
                                        in the Appendix.
                   LL = 8415.6 Kip
```

	3 1133.95 3310.6 38 4 1087.70 3244.4 37	2 191.6 136.6 70.4 164.2	
_CTK	3) Level : Roof DL = 1794.1 + <u>1.46(26440)</u> + <u>9.2(26440)</u> 1000 5.5(1000) + <u>76 (680 + 304.2 + 29.25 + 32 ¹6)</u> 1000	LL= 20 × 26440 1000 LL= 528.8 Kip	
_oreawy	$+ \left[\frac{1}{2} (1061.3) + 761.85\right]$ DL = 1956.4 + 1292.5 DL = 3248.9 Kip W ₃₄ = 3381.1 Kip 4) Total Effective Weight		
-	W _{x,tot} = 3826,1 + 3891,6 + 3836.6 + 3770.4 + 37 W _{x,tot} = 22470 Kip b) Equivalent Lateral Load	764.2 + 3381.1	
	1) V_{base} $S_s = \frac{6.3}{100}$, ASCE 7-05 Fig. 22-1 $S_s = 0.063$		
	S, = <u>2.2</u> , ASCE 7-05 Fig. 22.2 1000 S, = 0.022 Fa = 1.6, ASCE 7-05 Table 11.4-1	ς.	
	$F_{v} = 2.4$, ASCE 7-05 Table 11.4-2 $S_{ms} = S_s F_a$ $S_{ms} = 0.063(1.6)$ $S_{ms} = 0.101$		
	Smi = Si Fr Smi = 0.022(2.4) Smi = 0.053		

	Thaison	Ngnyen				seis	mic Load	
		$S_{DS} = \frac{2}{3} S_{NS}$ $S_{DS} = 0.067$						
		$S_{01} = 2/3 S_{m}$ $S_{01} = 2/3 S_{m}$ $S_{01} = 0.035$						
		Seismic Des	ign Lateg ign Categ	ory (Shor ory (Long	Period): Period):	A, ASCE A, ASCE	7-05 Table 11.6-1 7-05 Table 11.6-2	
		h = 105' Cr = 0.2 , A	UCE 7-05	Table 12.	8-2			
ONAMA	-	x = 0.75 , A T_L = 8 sec T~Cxh_x,	ASCE 7-0	5 Fig. 22	-15	T٤T		
		T ~ 0.66 sec						
		$R = 5 , Asc K = 2.5 C_s = Sos , \frac{R}{T}$			-3			
		V _{base} = W _{stor} V _{base} = 2247 V _{base} = 376.	0(0.017)					
	2)	story Shear	·(Vx) and	overturn	ing mome	44		
		Cx = Wzhz Zwzh	R R			_	+ (T - 0.5)(2 - 1), (2.5-0.5)	ASCE7-05 Eq. 12.3-12
		$F_{x} = C_{x} V_{bus}$ $\Sigma(w_{x} h_{x}^{R}) = 1$	floor le	ateral load	dat		1 + <u>(0.66 - 0.5)</u> (1.5 - 0.5) 1.078	
		Floor Level	President Contractor Contractor	w.	Wihi	F. (Kip)	Story shear (Kip)	
		٥	0	0	0	0	376,4	
		1 2	16	3826.1	75997.2	18.51	376,4 357,84	
		3	30 44	3836.6	226771.5	55.24	320.81	
		4	58	3770.4	300166.9	73.13	265.57	
		5 Roof 1	72 86	3764.2	37833555 411573.4	92.17	192.44	
_								
								>
	1							

	Thaiso	in Nguyen			seismic Loa	d	4
			(1)		(1)		
	1	Floor Level hx		uniting Mericut = Fah	x (KIP*A)		
		0 0		0			
		1 16		296.16			
		2 3		1112,40			
		3 4		2430.56			
		4 5	1	4241.54			
		5 7		6636,24			
		Roof 1 8	6	8623.22			
6			296.16 + 23340.1	1112.40 + 2450.56 + 4 Kip+f8	1241.54+6636,24 + 8623	.22	
COMAND							
M	-						
X							
	1						
	1						
							[
	1						
							1
							1
	1						
	2						
	Presenter of the second						
	1						
							1000

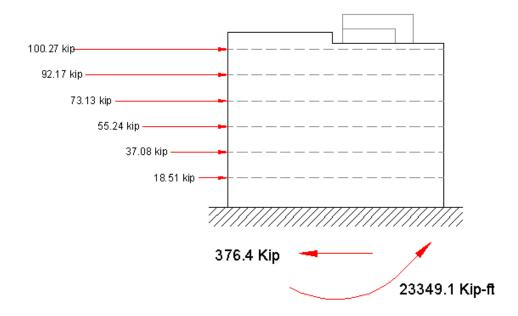


Figure AE.1, Seismic Loads

Appendix F: Irregularity Analysis

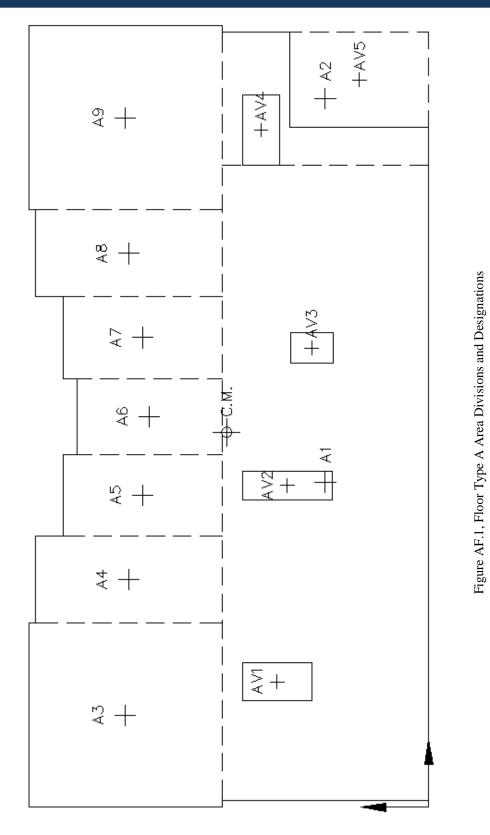
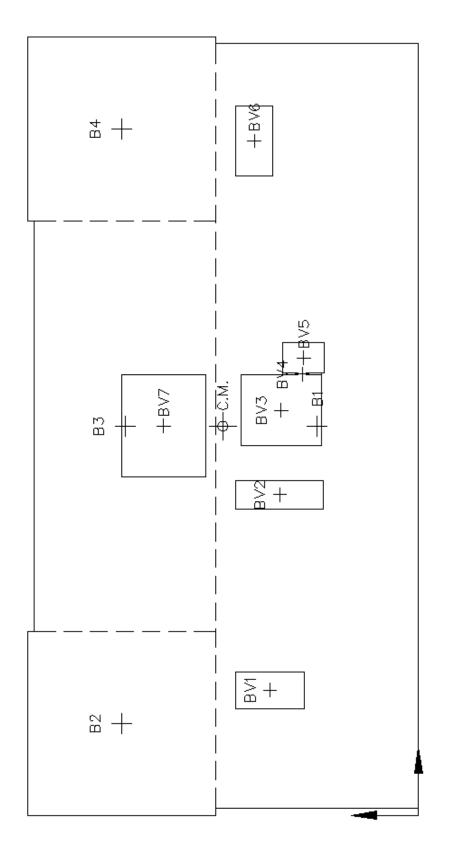



Figure AF.2, Floor Type B Area Divisions and Designations

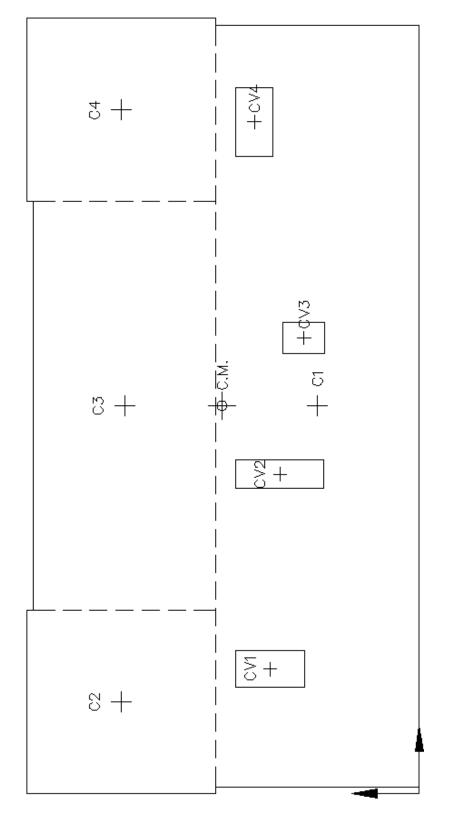
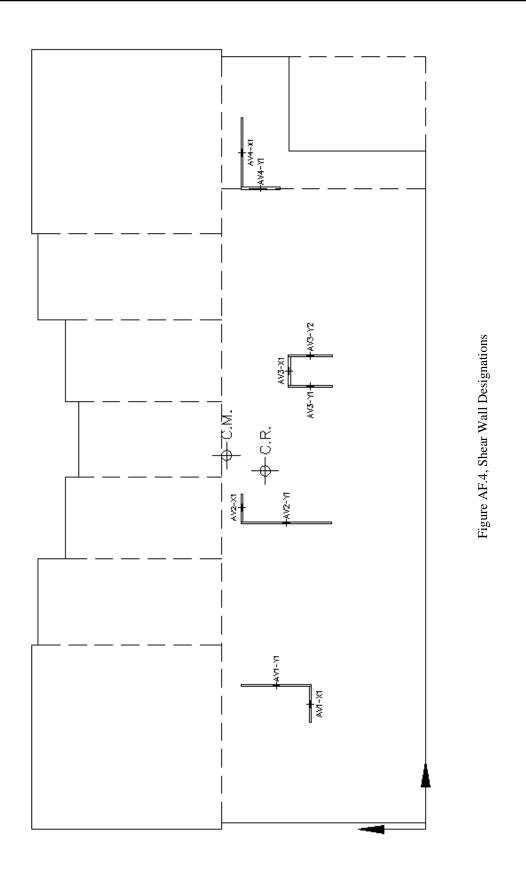



Figure AF.3, Floor Type C Area Divisions and Designations

	Thaison Nguyen					Irregularity Analysis	1
1	*** Lateral L	oad Resisti	ng Structur		ed to be ri	gid (Concrete Shear Walls)	
	A. Center of M	lass and Rig	jid it y				
_	*** Assume	all latera	1 resisting (lements	have a sti	ffness proportional to	
		five length				51 V.5	
	FLOOR Type	Floo + 1	0.01				
	A	0					
	8						
	C	2,3,					
'a	1	Roof	1				
"DAMPAD"	Floor Type	Component	Area (fr²)	Center	+ Mass		
R				$\chi(\mu)$	4(40)		
	A		-				
		AL	11324.15	95.31	30.38		
		Avi	-224,55	36.84	44.54		1
		AV2	-223,83	94.51	41.58		
		AV3	-113.50	134.88	34.42		
		AY4 Al	- 224.55	198.83	49.26		
		Av5	-1143.33	213.51	30.38		
		A3	3069.82	17.09	89.09		
		A4	1394.20	66.92	\$8.04		
1		AS	1115.96	91.53	84.09		
		A6	949.17	114.76	82.01		
		A7	1115.96	137.88	84.09		
		A8	1394.00	162.58	88.09		
		<u> </u>	3069.52	202.42	89.04	•	
	В				1		
		BI	13701.04	114.76	30.38		
		BVI	- 224.55	36,84	44.54		
		BV2 BV3	-223.83	94.51 119.39	41.58		
		BVY	- 5.75	128.09	34.92		
		BVS	-113.50	134.88	34.42		
		BV6	-124.55	198.83	49.26		
		Bl	3069.52	27.09	84.59		
		B3	6623.78	114.76	82.09		
		BV7	-757.99	114.76	76.48		
		B4	3069.52	202.42	89.09		
	C						
		C1	13701.04	114.76	30.38		
		CV1	- 224.55	36.84	44.54		
		CV2 CV3	- 223.83	94.51 134.88	41.58 34.42		
		CY4	-224.55	148.83	49.26		
	1 1	1	1	1 1.0105	THE P		1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Thaison Nguyen				Irreg	alarity Analys	115
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		63 6	623.78 1	14.76 88.09			
$ \begin{array}{c cccccccccc} Li & \chi_{1} & \chi_{1} & \chi_{2} & \chi_{1} \\ \hline & \chi_{1} & \chi_{2} & \chi_{2} & \chi_{1} \\ \hline & \chi_{1} & \chi_{2} & \chi_{2} & \chi_{1} \\ \hline & \chi_{1} & \chi_{2} & \chi_{2} & \chi_{2} & \chi_{2} \\ \hline & \chi_{1} & \chi_{2} & \chi_{2} & \chi_{2} & \chi_{2} & \chi_{2} \\ \hline & \chi_{1} & \chi_{2} & \chi_$	А В	110.07	59.34 58.72	42 J			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{\Sigma(x_i A_i)}{\Sigma(A_i)}$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lateral Resist	ing Elements	Length	Element Cente	y of Rigidity	Global Cents	er of Rigidi
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$\chi(\mu)$		X(41)[3]	4601 [4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,				/	1.0	1-1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AVI-XI		10.33	36.84	34.33		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				14 COL			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Av3-x1 x g.41 134.55 40.7 Av3-y2 y 13.17 134.42 54.42 Av4-y1 y 1.67 155.63 49.26 Av4-y1 y 1.67 155.63 49.26 Av4-y1 y 20.44 172.77 54.76 I31 $x_r = \sum (x_i Ly)$ 20.44 172.77 54.76 I31 $x_r = \sum (x_i Ly)$ 20.44 172.77 54.76 I41 $y_r = \sum (x_i Ly)$ 20.44 172.77 54.76 I41 $y_r = \sum (x_i Ly)$ $\overline{\Sigma(L_x)}$ $\overline{\Sigma(L_x)}$ $\overline{\Sigma(L_x)}$ Floor Type Eccentruck + y $\overline{\Sigma(L_x)}$ A 4.56 10.55 \overline{B} $\overline{Q_{118}}$ 10.43 G $\overline{Q_{28}$ 10.10 \overline{Q} \overline{Q} \overline{Q} \overline{Q}		1 3				105.51	47 70
AV3-Y2 y 13.17 134.42 54.42 AV4-Y1 y 10.67 155.63 44.26 AV4-X1 x 20.41 174.77 54.76 I31 $x_v = \sum (x_i L_y)$ $x_i L_y$ 174.77 54.76 I41 $y_v = \sum (x_i L_y)$ $\sum (L_x)$ $\sum (L_x)$ Floor Type Eccentric_+y $x_i L_y$ A 4.56 10.43 B $q_i R^2$ 10.43 C $q_i 28$ 11.10						105101	10.14
AV4-Y1 μ <		· · · · · · · · · · · · · · · · · · ·		1			
AV4-x1 x x0.41 (77.17) 54.76 I31 $x_r = \frac{\sum (x_i L_y)}{\sum (L_y)}$ I41 $y_r = \frac{\sum (y_i L_x)}{\sum (L_x)}$ Floor Type Eccentric_t+y $X_i = \frac{\sum (x_i L_y)}{\sum (L_x)}$ Floor Type $X_i = \frac{\sum (x_i L_y)}{\sum (L_x)}$ $X_i = \frac{\sum (y_i L_x)}{\sum (L_x)}$	 Company States and S				5		
$ \begin{array}{lllllllllllllllllllllllllllllllllll$						1 1	
Floor Type Eccentrics + y $ x ^{[6]}$ $ y ^{[6]}$ A 4.56 B 9.18 (1.18) 10.93 C 9.28	7						
	Floor Type A B	Eccentric) x ^[5] 4.56 11 9.18 10).93				

	Thaison Nguyen						Irregularity	Analysis	
			-				-		
	Lateral Resisting	di	(7]		3. 2 .				
	Element	x	4						
	AVI-XI	-68.67 -1	3.46						
	- AY1-Y1	1 1	3.25						
-	AV2-Y1	- 15.25 -6							
	AY2-X1		.96						
	AV3-YI	24.83 -1	2.038						
	AV3-X1		7.13						
	AV3-Y1.	1	3.38						
	AV4-Y1	1.	.46						
	AV4-XA	1 1	6.96						
5									
M	[7] di = Elemen	it Center	of Rigi	idity - 1	Global i	Center	of Rigidit	У	
Ĩ							1		
TAMPAL	$\Sigma(K_{x,j}d_{x,j}^2)$	+ Ky, i dy	(i) = 19'	1931 ,	K = L				
`						2	<u></u>		
	Lateral Resisting			,dx /[[
	Elements	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	YPE : A	Floor T	Ype: B	1	Type: C		
		X	4	X	1 1	X	4 4		
	AVI-X1	0.0032		0.0065	0.0077	0.0065	0.0078		
	AVI-X1	0.0031	0.078	0.062	0.074	0.062	0.075		
	AV2- Y1	0.0095	0.024	0.019	0.023	0.019	0.013		
	AV2- X1	0.0013	0.0033	0.0026	0.0031	0.0017	0.0032		
	Av3-YI	0.0075	Commence and	0.0151	0.0121	0.0153	0.0183		
	AV3- X1	0.0014	0.0035	0.0028	0.00 33	0. 3028	0.0034		
S	Ay3-Y2	0.0010	0.026	0.021	0.025	0.021	0.025		
	A_V4-Y1	0.022	0.057	0.045	0.054	0.045	0.054		
	AV4-XI	0.0033	10.0083	1 0.0066	0.0078	0.0067	0.0000		
							0 1 4		
	dx = eccentrici	ly betwee	in Lenter	ot Mass	and Ler	iter of	Rigidity.		
		3 E	ł						
	B. Trregularity	and Wine							
	B. Irregularity							121	
				43′ . 0	er Asci	=7-05 (F	Caure 6-9 C	ase TT	
				43' , p 61'	er Asce	E7-05; F	igure 6-9 c	ase II	
	B. Irregularity Cace, long = O Cace, short = O			43' , P 61'	er Asce	57-05; F	igure 6-9 c	ase II	
				43',p	er Asce	E7-05; F	igure 6-9 c	ase II	
	Cace, long = 0 Cace, short = 0	.15(229.5 .15(117.42)	1) = 34.) = 17.		er Asce Wind		igure 6-9 C	ase II	
		.15(229.5 .15(117.42) Wind 4	1) = 34.1) = 17. to Long	side	Wind	L to	Shert Side	ase II	
	Cace, long = 0 Cace, short = 0	.15(229.5 .15(117.42) Wind 4	1) = 34.) = 17.		Wind	<u>↓ to</u>	Shert Side	ave II	
	Eace, long = 0 Eace, short = 0 Floor Level	.15(229.5 .15(117.42) Wind L Case I (1) = 34.1) = 17.1 to Long	side Case IZ	Wind Case I	L to Case II	Short Side	ase II	
	Eace, long = 0 Eace, short = 0 Floor Level	.15(229.5 .15(117.42) Wind 4 Case I (62.76	1) = 34.) = 17. to Long (ase I.II 47.07	side Case II 35.30	Wind Case I 25.43	L to Case II 19.07	Shert Side III Case IX 14,30	ase II	
	Eace, long = 0 Eace, short = 0 Floor Level 0 1	.15 (229.5 .15 (117.42) Wind L Case I (62.76 121.12	1) = 34.) = 17. to Long (ase II II 47.07 90.84	side Case 17 35.30 68.13	Wind Case I 25.43 49.43	L to Case II 19.07 37.07	Short Side .TII Case TX 14.30 27.80	ase II	
	Cace, long = 0 Cace, short = 0 Floor Level 0 1 2	.15 (229.5 .15 (117.42) Wind 1 Case I (62.76 121.12 124.09 131.29	1) = 34.) = 17. to Long (ase I, II 47.07 90.84 93.07	side Case IV 35.30 68.13 69.80	Wind Case I 25.43 49.43 51.79	L to Case II 19.07 37.07 38.84	Short Suice III Case IX 14.30 27.80 29.13	ase II	
	Eace, long = 0 Eace, short = 0 Floor Level 0 1 2 3	.15 (229.5 .15 (117.42) Wind 1 Case I C 62.76 121.12 124.09 131.29 137.03	1) = 34.) = 17. to Long (ase I.II 47.07 40.84 43.07 46.47	side <u>Case</u> 35.30 68.13 69.80 73.85	Wind Case I 25:43 49:43 51: 79 55:47	L to Case II 19.07 37.07 38.84 41.60	Short Suice III Case IX 14.30 27.80 29.13 31.20	ase II	
	Cace, long = 0 Cace, short = 0 Floor Level 0 1 2 3 4	.15 (229.5 .15 (117.42) Wind + Case I (62.76 121.12 124.09 131.29 131.29 137.03 141.78	1) = 34.) = 17. to Long (ase I.II 47.07 40.84 43.07 48.47 102.77	5ide Case ☑ 35.30 68.13 69.80 73.85 77.08	Wind Case I 25.43 49.43 51.79 55.47 58.41	<u>Lase II</u> 19.07 37.07 38.84 41.60 43.81	Short Suja III Case IV 14.30 27.80 29.13 31.20 32.86	ase II	
	Cace, long = 0 Cace, short = 0 Floor Level 0 1 2 3 4 5 Roof 1	.15 (229.5 .15 (117.42) Wind + Case I C 62.76 121.12 124.09 131.29 131.29 137.03 141.78	1) = 34.) = 17. to Long (ase I.II 47.07 40.84 43.07 48.47 102.77 106.34	5:de Case V 35.30 68.13 69.80 73.85 72.08 74.75	Wind Case I 25:43 49:43 51:74 55:47 58:41 50:84	<u>L to</u> <u>Case II</u> 19.07 37.07 38.84 41.60 43.81 45.63	Short Suje TI Case TX 14.30 27.80 29.13 31.20 32.96 34.22	ase II	
	Cace, long = 0 Cace, short = 0 Floor Level 0 1 2 3 4 5	.15 (229.5 .15 (117.42) Wind + Case I C 62.76 121.12 124.09 131.29 137.03 141.78 168.50	1) = 34.) = 17. to Long (ase I.II 47.07 40.84 43.07 48.47 102.77 106.34 125.58	5ide Case ₹ 35.30 68.13 69.80 73.85 79.08 74.75 44.78	Wind Case I 25:43 49:43 51:79 55:47 58:41 50:54 47:45	L +0 Case II 19.07 37.07 38.84 41.60 43.81 45.63 35.59	Short Suje TI Case TX 14.30 27.80 29.13 31.20 32.96 34.22 26.59	ase II	

Page **49** of **69**

Thaison Nguyen Irregularity Analysis 47 Kip-ft [8] Mosc, torsion Floor Level Wind 1 to Long Side Wind 1 to short Side Lase II Lase IV Lase I Case IV 1215.32 ð વાન્યવ 251.95 188.96 2345.43 Ł 1759.07 489.73 367.29 2402.94 1802.21 513.11 384.83 2 3 2542.37 549.57 1906.77 412.18 2653.52 578, 70 4 1990.14 434.02 5 2745.50 2059.12 602.77 452.08 Roof 1 3262.92 2447.19 470.11 352.58 TOP \$73.38 430.04 143.36 107.52 TAMPAD' [8] | Mare tomion] = | Wind Load + Cace | a see exict on following page for the load on each lateral resisting cloment per case Maximum Wind Base Shear is in element AVI-VI Maximum Wind Base Shear = 325 Kips, element AVI-YI Maximum Overturning moment on Floment = 16608 Kips fr 1) Story Drift *** Assume concrete remains clastic , for drift calculations. *** Deflection conjunctions don't consider Greep on other long term effects *** Assume only 25% of Ig is effective Pmax-instever (Kip), Lateral Resisting 0(8) 5 Member 1 1 3 4 Roofl Top 11.68 Av1-x1 5.35 10.41 10.90 12.30 12.81 9.99 3,05 AV | -Y1 21-15 43.63 44.76 47.36 44.43 \$1.15 60.79 9.10 AVX-YI 20.28 40.31 41.32 : 43.72 45.63 47.21 56.11 9.86 Ay2-XI 4.47 8.69 9.10 9.75 10.27 10.69 8.34 2.54 9.13 18.07 AV3-YI 16.69 17.08 12.86 19.51 23,19 4.08 AV3-X1 8.62 9.03 9.67 10.61 8.27 2.52 4.43 10.19 16.38 12.33 AY3-Y2 8.95 16.02 18.09 3.91 18,72 22.25 Av4-YI 7.10 11.82 12.34 15.18 10.92 11.18 12.77 2.67 AV4-X1 21.71 22.75 24.37 25.66 26.73 11.18 20.84 6.36 [9] Lateral load goes to ground $\Delta = P I^3 / c$ $\begin{array}{l} \Delta_{drist} = \Delta_{iri} - \Delta_{i} \\ \Delta_{drist} = \left(P_{iri} \, l_{iri} - P_{i} \, l_{i}^{3} \right) / c \\ \Delta_{drist} = l^{3} \left(P_{iri} - P_{i} \right) / c , \text{ when } l_{iri} = l_{i} \end{array}$ C= Constant= 12EL, fixed ends, E = 57000 1 42

		AV4-X1	10.97	21.32	22.34	23.93	25.19	26.24	20.47	6.24			AV4-X1	0.21	0.39	0.41	0.44	0.47	0.49	0.38	0.12				AV4-X1	11.18	21.71	22.75	24.37	25.66	26.73	20.84	6.36
		AV4-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			AV4-Y1	-1.44	-2.85	-2.82	-3.02	-3.18	-3.31	-2.58	-0.79				AV4-Y1	-1.44	-2.85	-2.82	-3.02	-3.18	-3.31	-2.58	-0.79
	ments (Kip)	AV3-Y2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		ements (Kip)	AV3-Y2	-0.66	-1.22	-1.30	-1.39	-1.46	-1.52	-1.19	-0.36			(Kip)	AV3-Y2	-0.66	-1.22	-1.30	-1.39	-1.46	-1.52	-1.19	-0.36
de	Wind Load Direct Component in Lateral Resisting Elements (Kip)	AV3-X1	4.52	8.79	9.21	9.80	10.38	10.81	8.43	2.57	ide	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	AV3-X1	-0.09	-0.16	-0.17	-0.19	-0.20	-0.20	-0.16	-0.05	-	ide	Total Wind Load in Lateral Resisting Elements (Kip)	AV3-X1	4.43	8.62	9.03	9.67	10.19	10.61	8.27	2.52
lar to Short S	ent in Latera	AV3-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	lar to Short S	nent in Latera	AV3-Y1	-0.49	-0.89	-0.95	-1.02	-1.07	-1.12	-0.87	-0.27		lar to Short S	Lateral Resist	AV3-Y1	-0.49	-0.89	-0.95	-1.02	-1.07	-1.12	-0.87	-0.27
Vind Perpendicular to Short S	irect Compon	AV2-X1	4.39	8.53	8.94	9.57	10.08	10.50	8.19	2.50	Vind Perpendicular to Short S	rsion Compor	AV2-X1	0.08	0.16	0.17	0.18	0.19	0.19	0.15	0.05		Wind Perpendicular to Short Side	Wind Load in	AV2-X1	4.47	8.69	9.10	9.75	10.27	10.69	8.34	2.54
Wir	Wind Load D	AV2-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Wir	Wind Load To	AV2-Y1	0.61	1.12	1.20	1.28	1.35	1.41	1.10	0.33	•	Wir	Total /	AV2-Y1	0.61	1.12	1.20	1.28	1.35	1.41	1.10	0.33
		AV1-Y1	00.0	0.00	00.0	0.00	0.00	00.0	0.00	0.00			AV1-Y1	1.98	3.63	3.87	4.14	4.36	4.54	3.54	1.08				AV1-Y1	1.98	3.63	3.87	4.14	4.36	4.54	3.54	1.08
		AV1-X1	5.55	10.79	11.31	12.11	12.75	13.28	10.36	3.16			AV1-X1	-0.21	-0.38	-0.40	-0.43	-0.46	-0.47	-0.37	-0.11				AV1-X1	5.35	10.41	10.90	11.68	12.30	12.81	9.99	3.05
	Floor Level		0	1	2	'n	4	9	Roof 1	Top		Floor Level		0	1	2	e	4	5	Roof 1	Top			Floor Level		0	1	2	'n	4	5	Roof 1	Top
										•																							
		AV4-X1	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00			AV4-X1	0.21	0.80	0.83	0.88	0.91	0.94	1.12	0.20				AV4-X1	0.21	0.80	0.83	0.88	0.91	0.94	1.12	0.20
		AV4-Y1	8.51	16.42	16.82	17.79	18.57	19.22	22.84	4.01		-	AV4-Y1	-1.40	-5.45	-5.04	-5.97	-6.23	-6.45	-7.86	-1.35				AV4-Y1	7.10	10.97	11.18	11.82	12.34	12.77	15.18	2.67
	(Kip) (Kip) (Kip)	AV3-Y2	9.60	18.53	18.98	20.08	20.96	21.69	25.77	4.53		Resisting Elements (Kip)	AV3-Y2	-0.85	-2.51	-2.60	-2.75	-2.87	-2.97	-3.53	-0.62			s (Kip)	AV3-Y2	8.95	16.02	16.38	17.33	18.09	18.72	22.25	3.91
ide	ur.	AV3-X1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ide		AV3-X1	-0.09	-0.34	-0.35	-0.37	-0.39	-0.40	-0.47	-0.08			sting Elements (Kip)	AV3-X1	-0.09	-0.34	-0.35	-0.37	-0.39	-0.40	-0.47	-0.08
Wind Perpendicular to Long Sid	Wind Load Direct Component in Lateral	AV3-Y1	9.60	18.53	18.98	20.08	20.96	21.69	25.77	4.53	ular to Long Si	Wind Load Torsion Component in Lateral	AV3-Y1	-0.47	-1.84	-1.80	-2.01	-2.10	-2.17	-2.58	-0.45		Wind Perpendioular to Long Sic	Total Wind Load in Lateral Resisti	AV3-Y1	9.13	16.69	17.08	18.07	18.86	19.51	23.19	4.08
ind Perpendic	Direct Compor	AV2-X1	0.0	0.0	0.0	0.0	0.00	0.0	0.0	00.0	Wind Perpendicular to Long	orsion Compo	AV2-X1	0.08	0.32	0.33	0.35	0.37	0.38	0.45	0.08		ind Perpendic	Wind Load in	AV2-X1	0.08	0.32	0.33	0.35	0.37	0.38	0.45	0.08
×	Wind Load L	AV2-Y1	19.69	37.99	38.92	41.18	42.98	44.47	52.85	9.29	M	Wind Load T	AV2-Y1	0.0	2.31	2.40	2.53	2.65	2.74	3.25	0.57		W	Total	AV2-Y1	20.28	40.31	41.32	43.72	45.83	47.21	56.11	9.86
		AV1-Y1	15.37	29.66	30.39	32.15	33.55	34.72	41.26	7.25			AV1-Y1	1.83	7.48	7.75	8.20	8.56	8.85	10.52	1.85				AV1-Y1	17.29	37.14	38.13	40.35	42.11	43.57	51.78	9.10

Table AF.1, Wind Case I

Page **50** of **69**

0.00

Leve

AV1-X1

Wind Load Direct Component in Lateral Resisting Elements (Kip)

oor Level

				-		•			
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	4.16	00.0	00.0	3.29	00.0	3.39	0.00	0.00	8.23
-	8.10	00.0	00.0	6.40	00.0	6.59	0.00	00.0	15.99
2	8.48	00.0	00.0	6.70	0.00	6.90	0.00	00.0	16.75
с,	9.08	0.00	0.00	7.18	0.00	7.39	0.00	0.00	17.94
4	9.57	0.00	00.0	7.56	0.00	97.7	00.0	00.0	18.90
2	96.6	0.00	00.0	7.87	00.0	8.11	0.0	00.0	19.68
Roof 1	77.7	00.0	00.0	6.14	00.0	6.33	0.00	00.0	15.35
Top	2.37	0.00	0.00	1.87	0.00	1.93	0.00	0.00	4.68
			W	nd Perpendio	Wind Perpendicular to Short Side	Side			
Floor Level			Wind Load T(orsion Compo	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	al Resisting E	Elements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.15	1.48	0.46	0.06	-0.36	-0.07	-0.50	-1.08	0.16
1	-0.28	2.73	0.84	0.12	-0.67	-0.12	-0.91	-1.99	0.29
2	-0.30	2.90	0.90	0.12	-0.71	-0.13	-0.97	-2.11	0.31
e	-0.32	3.11	0.96	0.13	-0.76	-0.14	-1.04	-2.26	0.33
4	-0.34	3.27	1.01	0.14	-0.80	-0.15	-1.10	-2.38	0.35
2	-0.36	3.41	1.05	0.15	-0.84	-0.15	-1.14	-2.48	0.36
Roof 1	-0.28	2.66	0.82	0.11	-0.65	-0.12	-0.89	-1.94	0.28

0.09

-0.59

-0.27

-0.04

-0.20

0.03

0.25

0.81

-0.08

Top

Floor Level			Wind Load D	irect Compon	Wind Load Direct Component in Lateral Resisting Elements (Kip)	I Resisting El	ements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	00.0	11.53	14.76	00.0	7.20	0.00	7.20	6.38	0.00
-	00.0	22.24	28.49	0.00	13.90	00.0	13.90	12.31	0.00
2	00.0	22.79	29.19	00:0	14.24	0.00	14.24	12.61	0.00
3	0.00	24.11	30.89	0.00	15.08	0.00	15.08	13.35	0.00
4	00.0	25.17	32.24	0.00	15.72	0.00	15.72	13.93	0.00
5	00.0	26.04	33.35	0.00	16.27	00.0	18.27	14.41	0.00
Roof 1	00.0	30.95	39.64	00:0	19.33	0.00	19.33	17.13	0.00
Top	00.0	5.44	6.97	00.00	3.40	0.00	3.40	3.01	0.00
			Wi	Wind Perpendic	ular to Long Side	ide			
Floor Level			Wind Load To	orsion Compo	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	al Resisting E	lements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.15	1.44	0.45	0.06	-0.35	-0.07	-0.48	-1.05	0.15
٢	-0.59	5.61	1.74	0.24	-1.38	-0.25	-1.88	4.09	0.60
2	-0.61	5.81	1.80	0.25	-1.43	-0.26	-1.85	4.23	0.62
6	-0.64	6.15	1.90	0.26	-1.51	-0.28	-2.06	4.48	0.66
4	-0.67	6.42	1.98	0.27	-1.58	-0.29	-2.15	4.87	0.68
5	-0.69	6.64	2.05	0.28	-1.63	-0.30	-2.23	4.83	0.71
Roof 1	-0.82	7.89	2.44	0.34	-1.94	-0.36	-2.85	-5.75	0.84
Top	-0.14	1.39	0.43	0.06	-0.34	-0.06	-0.46	-1.01	0.15
			Wind Pe	rpendicular to	Nind Perpendicular to Long and Short Side	ort Side			
Floor Level			Total	Total Wind Load in	in Lateral Resisting Elements (Kip)	ting Elements	s (Kip)		
	1X-1VA	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	3.86	14.45	15.67	3.42	6.48	3.26	6.22	4.25	8.54
r-	7.22	30.58	31.07	6.75	11.85	6.21	11.10	6.24	16.88
2	7.57	31.50	31.89	7.08	12.10	6.51	11.31	6.27	17.68
0	8.12	33.37	33.75	1.57	12.79	6.98	11.96	6.61	18.83
4	9:55	34.86	35.23	1.97	13.34	7.35	12.47	6.87	19.93
5	8.91	36.09	36.46	8.30	13.80	7.66	12.90	7.09	20.75
Roof 1	6.67	41.49	42.90	6.59	16.74	5.85	15.79	9.45	16.48
Top	2.14	7.64	7.65	1.97	2.86	1.83	2.66	1.41	4.92

Ξ
Case
Wind
AF.2,
Table

AV1-X1 AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X1 AV3-X1 AV3-Y1 AV3-X1 AV3-X1<	Wind Perpendicular to Long Side Wind Load Direct Component in Lateral Resisting	LL.	LL.	ш	e Resisting Elements (Kip)		Floor Level	a la		Wind Load D	irect Compon	Wind Ferpendicular to short sloe Wind Load Direct Component in Lateral Resisting Elements (Kip)	Resisting Ele	ements (Kip)			
416 0.00 0.00 3.26 0.00 6.00 0.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00 6.00 0.00	AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1 AV4-X1	AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	AV3-X1 AV3-Y2 AV4-Y1	AV4-Y1	\vdash	AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1	
8.10 0.00 0.00 6.40 0.00 6.59 0.00 <th< td=""><td>14.76 0.00 7.20 0.00 7.20 6.38 0.00</td><td>7.20 0.00 7.20 6.38</td><td>7.20 6.38</td><td>6.38</td><td></td><td>0.00</td><td>0</td><td>4.16</td><td>0.00</td><td>0.00</td><td>3.29</td><td>0.00</td><td>3.39</td><td>0.00</td><td>0.00</td><td>8.23</td></th<>	14.76 0.00 7.20 0.00 7.20 6.38 0.00	7.20 0.00 7.20 6.38	7.20 6.38	6.38		0.00	0	4.16	0.00	0.00	3.29	0.00	3.39	0.00	0.00	8.23	
8.40 0.00 0.00 6.70 0.00 7.10 0.00 7.10 0.00 <th< td=""><td>13.90 0.00 13.90 12.31</td><td>13.90 0.00 13.90 12.31</td><td>0.00 13.90 12.31</td><td>12.31</td><td></td><td>0.00</td><td>-</td><td>8.10</td><td>0.00</td><td>00.0</td><td>6.40</td><td>0.00</td><td>6.59</td><td>0.00</td><td>0.00</td><td>15.99</td></th<>	13.90 0.00 13.90 12.31	13.90 0.00 13.90 12.31	0.00 13.90 12.31	12.31		0.00	-	8.10	0.00	00.0	6.40	0.00	6.59	0.00	0.00	15.99	
8.06 0.00 7.18 0.00 7.39 0.00 <th< td=""><td>29.19 0.00 14.24 0.00 14.24 12.61 0.00</td><td>14.24 0.00 14.24 12.81</td><td>0.00 14.24 12.61</td><td>12.61</td><td></td><td>0.00</td><td>2</td><td>8.48</td><td>0.00</td><td>00.0</td><td>6.70</td><td>0.00</td><td>6.90</td><td>0.00</td><td>0.00</td><td>16.75</td></th<>	29.19 0.00 14.24 0.00 14.24 12.61 0.00	14.24 0.00 14.24 12.81	0.00 14.24 12.61	12.61		0.00	2	8.48	0.00	00.0	6.70	0.00	6.90	0.00	0.00	16.75	
8.57 0.00 0.00 7.56 0.00 6.13 0.00 <th< td=""><td>30.89 0.00 15.06 0.00 15.06 13.35 0.00</td><td>15.06 0.00 15.06 13.35</td><td>0.00 15.08 13.35</td><td>13.35</td><td>_</td><td>0.00</td><td>e</td><td>9.08</td><td>0.00</td><td>00.0</td><td>7.18</td><td>0.00</td><td>7.39</td><td>0.00</td><td>0.00</td><td>17.94</td></th<>	30.89 0.00 15.06 0.00 15.06 13.35 0.00	15.06 0.00 15.06 13.35	0.00 15.08 13.35	13.35	_	0.00	e	9.08	0.00	00.0	7.18	0.00	7.39	0.00	0.00	17.94	
8.96 0.00 0.00 7.87 0.00 6.14 0.00 6.00 0.00 1.00 0.00 <th< td=""><td>32.24 0.00 15.72 0.00 15.72 13.83 0.00</td><td>15.72 0.00 15.72 13.93</td><td>0.00 15.72 13.83</td><td>13.83</td><td></td><td>0.00</td><td>4</td><td>9.57</td><td>0.00</td><td>0.00</td><td>7.56</td><td>0.00</td><td>7.79</td><td>0.00</td><td>0.00</td><td>18.90</td></th<>	32.24 0.00 15.72 0.00 15.72 13.83 0.00	15.72 0.00 15.72 13.93	0.00 15.72 13.83	13.83		0.00	4	9.57	0.00	0.00	7.56	0.00	7.79	0.00	0.00	18.90	
7.77 0.00 0.00 6.14 0.00 1.87 0.00 <th< td=""><td>33.35 0.00 16.27 0.00 16.27 14.41 0.00</td><td>16.27 0.00 16.27 14.41</td><td>0.00 16.27 14.41</td><td>14.41</td><td></td><td>0.00</td><td>c)</td><td>96.6</td><td>0.00</td><td>00.0</td><td>7.87</td><td>0.00</td><td>8.11</td><td>0.00</td><td>0.00</td><td>19.68</td></th<>	33.35 0.00 16.27 0.00 16.27 14.41 0.00	16.27 0.00 16.27 14.41	0.00 16.27 14.41	14.41		0.00	c)	96.6	0.00	00.0	7.87	0.00	8.11	0.00	0.00	19.68	
2.37 0.00 0.00 1.87 0.00 1.83 0.00 0.00 0.00 XV1-X1 AV1-Y1 AV2-Y1 AV2-X1 AV2-Y1	39.64 0.00 19.33 0.00 19.33 17.13 0.00	19.33 0.00 19.33 17.13	0.00 19.33 17.13	17.13		0.00	Roof 1	77.7	0.00	00.0	6.14	0.00	6.33	0.00	0.00	15.35	
Wind Perpendicular to Short Side Wind Load Torsion Component in Lateral Resisting Elements (Kip) AVI-X1 AVI-Y1 AV2-X1 AV3-X1 AV3-Y1	8.97 0.00 3.40 0.00 3.40 3.01 0.00	3.40 0.00 3.40 3.01	3.40 3.01	3.01	_	0.00	Top	2.37	0.00	0.00	1.87	0.00	1.93	0.00	0.00	4.68	
Mind Fegendicular to Scional Side Mind Lead Torsion Component in Lateral Resisting Elements (r/p). AVI-Y1 AVZ-Y1 AVZ-																	
Wind Load Torsion Component in Lateral Resisting Elements (//s) Wind Load Torsion Component in Lateral Resisting Elements (//s) -033 3.18 0.02 1.4 0.7 2.31 4.4/1 -033 3.18 0.02 1.4 0.7 3.1 3.1 4.0 -033 3.18 0.02 1.46 0.27 1.4 3.2 3.4 -036 6.02 1.86 0.74 1.77 2.31 4.03 4.03 -076 7.17 2.22 0.31 -1.76 -3.26 -4.38 4.06 4.06 -0716 5.24 0.23 -1.83 0.34 -2.06 6.26 -4.38 4.06	Wind Perpendicular to Long Side	endicular to Long Side	g Side							Wir	erpendic	lar to Short Si	de				
AV1-X1 AV2-Y1 AV2-X1 AV3-Y1 AV3-Y1<	Wind Load Torsion Component in Lateral Resisting Elements (Kip)			Elements (Kip)			Floor Leve	la		Wind Load To	rsion Compo	nent in Latera	I Resisting E	lements (Kip)			
-033 318 0.88 0.14 -0.76 -0.14 -1.07 -2.31 068 6.02 1.86 0.26 -1.67 -0.27 -2.02 -4.86 0.71 6.80 2.10 0.29 -1.67 -0.31 -2.28 -4.86 0.77 6.80 2.10 0.29 -1.67 -0.31 -2.20 -4.86 0.76 7.77 2.22 0.31 -1.76 -0.31 -2.20 -4.86 0.76 7.77 2.22 0.33 -1.76 -0.34 -2.260 -5.48 0.76 5.82 1.80 0.25 -1.43 -0.26 -4.24 0.71 0.25 -1.43 -0.27 -0.76 -4.24 0.71 0.25 -1.43 -0.27 -0.76 -4.24 0.71 0.25 -1.43 -0.27 -0.76 -4.24 0.71 0.25 -1.43 -0.27 -0.76 -4.24 0.71 0.26	AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1 AV4-X1	I AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	1 AV3-X1 AV3-Y2 AV4-Y1	AV4-Y1		AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1	
-063 6.02 1.86 0.26 -1.48 -0.27 -2.02 -4.38 -076 6.36 2.10 0.29 -167 -0.31 -2.38 -4.96 -071 6.30 2.10 0.29 -167 -0.31 -2.38 -4.96 -076 7.17 2.22 0.31 -1.76 -0.32 -4.96 -078 7.46 2.30 0.32 -183 -0.36 -5.29 -061 5.74 0.32 -1.83 -0.36 -5.29 -5.24 -061 5.74 0.32 -1.83 -0.26 -5.24 -5.22 -061 5.74 0.32 -1.80 -0.26 -5.24 -5.22 -061 5.74 0.25 -1.66 -5.24 -5.22 -5.24 -071 0.35 -1.80 0.32 -1.80 -5.22 -5.27 -0.71 0.25 0.26 -0.27 -0.27 -4.38 -5.65 3.83	2.07 0.41 -2.36 -0.43 -3.23 -7.01 1.03	-2.36 -0.43 -3.23 -7.01	-3.23 -7.01			1.03	0	-0.33	3.18	0.98	0.14	-0.78	-0.14	-1.07	-2.31	0.34	
-066 6.35 1.86 0.27 1.16 -0.29 -1.13 -1.	8.61 0.91 -5.25 -0.96 -7.17 -15.58 2.28	-5.25 -0.98 -7.17 -15.58	-0.96 -7.17 -15.58	-15.58		2.28	-	-0.63	6.02	1.86	0.26	-1.48	-0.27	-2.02	4.38	0.64	
-071 6.80 2.10 0.29 -1.67 -0.31 -2.28 -4.96 -075 7.17 2.32 0.31 -1.76 -0.32 2.94 -6.92 -076 7.17 2.32 0.31 -1.76 -0.32 2.94 -6.44 -076 5.82 1.80 0.32 -1.83 -0.34 -2.60 -5.44 -0.61 5.82 1.80 0.25 -1.43 -0.26 -4.24 -0.71 0.73 -0.20 -0.74 -0.27 -0.74 -4.24 -0.71 0.73 -0.70 -0.76 -1.76 -1.77 -3.16 -0.71 1.71 2.71 1.271 1.271 -0.29 -4.24 3.83 3.16 0.78 -0.78 -0.78 -3.25 -4.03 3.83 3.16 0.78 -1.76 7.03 -1.07 -3.1 3.83 3.18 0.78 -1.167 7.03 -4.28 3.83	0.79 0.94 -5.40 -0.99 -7.37 -16.00 2.35	-5.40 -0.99 -7.37 -16.00	-0.99 -7.37 -16.00	-16.00		2.35	2	-0.68	6.35	1.96	0.27	-1.58	-0.29	-2.13	4.83	0.68	
-0.76 7.17 2.22 0.31 -1.76 -0.23 -5.40 -6.23 -0.71 7.46 2.32 1.80 -0.36 -1.96 -5.44 -0.71 5.74 0.25 -1.43 -0.26 -1.96 -5.44 -0.71 5.74 0.25 -1.43 -0.26 -1.96 -5.44 -0.71 0.81 0.25 -1.43 -0.26 -1.96 -5.44 -0.71 0.72 -0.76 -1.96 -0.76 -0.76 -0.76 3 3.1 1.71 AV-1 AV-2.11 AV-2.11 AV-2.11 -0.77 -0.76 3.83 3.1 4.02 -1.46 6.22 -2.13 -4.36 3.83 3.1 AV-2.1 AV-2.11 AV-2.1 -0.77 -2.02 -4.36 3.83 3.1 6.02 -1.48 6.22 -2.13 -4.96 3.83 5.77 -1.60 6.82 -2.16 -5.20 -4.38	7.19 0.99 -5.71 -1.05 -7.80 -16.93 2.48	-5.71 -1.05 -7.80 -16.93	-7.80 -16.93	-16.93		2.48	e	-0.71	6.80	2.10	0.29	-1.67	-0.31	-2.28	4.86	0.73	
-078 7.46 2.31 0.32 -1.83 -0.34 -5.44 -019 5.32 1.80 0.25 -1.43 -0.26 -4.24 -019 0.61 0.25 -1.43 -0.27 -0.66 -4.24 -019 0.61 0.25 -1.43 -0.27 -0.69 -4.24 -011 0.51 0.25 -1.43 -0.27 -0.69 -4.24 -0.11 0.25 1.80 0.261 -1.43 -0.27 -0.69 AVI-V1 AV2-V1 AV2-V1 AV2-V1 AV2-V1 -0.78 -1.07 -2.31 AVI-V1 AV1-V1 AV2-V1 AV2-V1 AV2-V1 -0.78 -1.07 -2.31 3.83 3.18 0.86 -1.48 6.32 -1.07 -2.31 -3.31 7.87 6.02 1.86 6.05 -1.48 6.22 -3.26 -4.66 -3.26 8.37 6.80 2.18 -1.167 7.16 -2.40	7.50 1.04 -5.96 -1.09 -8.14 -17.67 2.59	-5.86 -1.09 -8.14 -17.67	-1.09 -8.14 -17.67	-17.67		2.59	4	-0.75	71.7	2.22	0.31	-1.76	-0.32	-2.40	-5.22	0.76	
-061 5.22 1.80 0.25 -1.43 -0.20 -1.66 -4.34 -0.11 0.31 0.25 0.03 -0.204 -0.27 -0.56 -0.11 0.21 0.25 0.03 -0.204 -0.27 -0.56 -0.11 0.21 0.23 -0.204 -0.27 -0.26 AVI-X1 AVI-Y1 AV2V1 AV2V1 AV2V1 AV2V1 -0.29 AVI-X1 AVI-Y1 AV2V1 AV2V1 AV2V1 AV2V1 AV2V1 AV2V1 3.83 3.16 0.38 -0.78 -0.78 -0.29 -0.31 3.83 3.16 0.98 0.78 -0.78 -0.78 -0.31 7.47 6.02 1.86 6.65 -1.46 6.22 -0.33 8.37 6.03 2.107 -2.29 -4.90 -2.31 8.37 6.03 2.167 -1.67 7.40 -2.40 -2.31 8.37 6.03 2.167 <t< td=""><td>7.76 1.07 -6.17 -1.13 -8.42 -18.29 2.68</td><td>-6.17 -1.13 -8.42 -18.29</td><td>-8.42 -18.29</td><td>-18.29</td><td></td><td>2.68</td><td>5</td><td>-0.78</td><td>7.46</td><td>2.31</td><td>0.32</td><td>-1.83</td><td>-0.34</td><td>-2.50</td><td>-5.44</td><td>0.80</td></t<>	7.76 1.07 -6.17 -1.13 -8.42 -18.29 2.68	-6.17 -1.13 -8.42 -18.29	-8.42 -18.29	-18.29		2.68	5	-0.78	7.46	2.31	0.32	-1.83	-0.34	-2.50	-5.44	0.80	
-019 0.81 0.25 003 -0.20 -0.04 -0.27 -0.66 Wind Expendeduarts Short Site Total Wind Load in Lateral Peasisting Elements (kp) AVI-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV4-Y1 AV4-Y1 Total Wind Load in Lateral Peasisting Elements (kp) AV1-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV4-Y1 383 3.18 0.72 3.25 1.07 2.31 383 3.18 0.78 0.78 3.25 -1.07 2.31 747 6.02 1.86 6.65 -1.46 6.22 -2.02 4.38 383 5.76 0.03 2.10 6.76 -3.67 -3.67 5.31 8.27 7.17 2.22 7.87 -1.167 7.46 -5.20 -6.66 8.82 7.17 2.21 8.19 -1.83 7.77 -2.40 -5.22 8.82 7.17 2.29 -1.83 7.77 -2.60	9.23 1.27 -7.33 -1.34 -10.01 -21.73 3.19	-7.33 -1.34 -10.01 -21.73	-10.01 -21.73	-21.73		3.19	Roof 1	-0.61	5.82	1.80	0.25	-1.43	-0.26	-1.95	4.24	0.62	
Wind Perpendicular to Short Side Total Wind Load in Lateral Resisting Elements (Kip) AVI-Y1 AVI-Y1 <th colspa<="" td=""><td>0.43 0.06 -0.34 -0.06 -0.46 -1.01 0.15</td><td>-0.34 -0.06 -0.46 -1.01</td><td>-0.06 -0.46 -1.01</td><td>-1.01</td><td></td><td>0.15</td><td>Top</td><td>-0.19</td><td>0.81</td><td>0.25</td><td>0.03</td><td>-0.20</td><td>-0.04</td><td>-0.27</td><td>-0.59</td><td>0.09</td></th>	<td>0.43 0.06 -0.34 -0.06 -0.46 -1.01 0.15</td> <td>-0.34 -0.06 -0.46 -1.01</td> <td>-0.06 -0.46 -1.01</td> <td>-1.01</td> <td></td> <td>0.15</td> <td>Top</td> <td>-0.19</td> <td>0.81</td> <td>0.25</td> <td>0.03</td> <td>-0.20</td> <td>-0.04</td> <td>-0.27</td> <td>-0.59</td> <td>0.09</td>	0.43 0.06 -0.34 -0.06 -0.46 -1.01 0.15	-0.34 -0.06 -0.46 -1.01	-0.06 -0.46 -1.01	-1.01		0.15	Top	-0.19	0.81	0.25	0.03	-0.20	-0.04	-0.27	-0.59	0.09
Wind Properticular to Short Slide Total Wind Load in Lateral Resisting Elements (kip) AVI-Y1 AVI-Y1 AV2-Y1	-	-	-					-									
Total Wind Load in Lateral Resisting Elements (rip) AVI-Y1 AVI-	Wind Perpendicular to Long Side	endicular to Long Side	g Side							Wir	nd Perpendicu	lar to Short Si	de				
AVI-X1 AV1-X1 AV2-Y1 AV2-X1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 Z <thz< th=""> Z <thz< th=""> <thz< th=""></thz<></thz<></thz<>	Total Wind Load in Lateral Resisting Elements (Kip)			ts (Kip)			Floor Leve	e l		Total	Wind Load in	Lateral Resis	ing Elements	s (Kip)			
3.83 3.18 0.08 3.43 -0.78 3.25 -107 -2.31 7.84 6.302 1.80 6.85 -1.48 5.32 -1.33 -4.38 7.84 6.302 1.80 6.86 -1.67 7.32 -4.38 -4.38 7.85 6.302 1.80 6.87 -1.66 6.82 -2.13 -4.38 8.837 6.80 2.10 7.47 -1.67 7.09 -2.28 -4.96 8.82 7.17 2.22 7.87 -1.67 7.09 -2.260 -5.44 2 1 7.16 7.46 2.31 8.19 -1.83 7.77 -2.60 -5.44 2 1 7.16 7.46 2.31 8.19 -1.83 7.77 -2.60 -5.44 2 1 7.16 7.46 1.83 7.77 -2.60 -5.44 2 1 7.18 0.183 7.77 -2.60 -5.44 2	AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1 AV4-X1	AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	AV3-X1 AV3-Y2 AV4-Y1	AV4-Y1		AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1	
7.47 6.02 1.86 6.66 -1.48 6.32 -2.02 -4.38 8.37 6.36 1.96 6.67 -1.67 6.02 -1.38 -4.03 8.37 6.80 1.90 7.17 -1.67 6.02 -2.83 -4.03 8.37 6.80 1.90 7.47 -1.67 7.09 -2.28 -4.03 8.82 7.17 2.22 7.87 -1.76 7.40 -5.22 -5.40 -5.22 9.18 7.46 2.31 8.19 -1.83 7.77 -2.60 -5.44 -5.22 1 2.16 -1.83 7.77 -2.60 -5.44 -5.22 1 2.18 -1.36 -1.83 7.77 -2.60 -5.44 -5.22 1 2.16 0.20 1.83 0.27 -0.50 -5.44 -5.22 2 2.18 0.10 0.20 1.89 -0.27 -0.56 2.18 0.10 0.20 <td>17.74 0.41 4.84 -0.43 3.97 -0.63 1.03</td> <td>4.84 -0.43 3.97 -0.63</td> <td>3.97 -0.63</td> <td>-0.63</td> <td></td> <td>1.03</td> <td>0</td> <td>3.83</td> <td>3.18</td> <td>0.98</td> <td>3.43</td> <td>-0.78</td> <td>3.25</td> <td>-1.07</td> <td>-2.31</td> <td>8.57</td>	17.74 0.41 4.84 -0.43 3.97 -0.63 1.03	4.84 -0.43 3.97 -0.63	3.97 -0.63	-0.63		1.03	0	3.83	3.18	0.98	3.43	-0.78	3.25	-1.07	-2.31	8.57	
7.82 6.35 1.96 6.87 -1.56 6.62 -2.13 -4.63 -1.63 8.37 6.80 2.10 7.47 -1.67 7.09 -2.28 -4.63 -1.67 7.09 -2.28 -4.63 -1.67 7.09 -2.28 -4.63 -1.67 7.09 -2.140 -5.40 -5.22 -5.22 -4.96 -5.22 -5.22 -1.83 7.71 -2.50 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.24 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22 -5.23 -4.05 -5.22 1.51 -7.71 7.71 7.71 7.25 1.24 1.74 <td< td=""><td>35.11 0.91 8.64 -0.96 6.72 -3.27 2.28</td><td>8.64 -0.96 6.72 -3.27</td><td>6.72 -3.27</td><td>-3.27</td><td></td><td>2.28</td><td>-</td><td>7.47</td><td>6.02</td><td>1.86</td><td>6.65</td><td>-1.48</td><td>6.32</td><td>-2.02</td><td>4.38</td><td>16.63</td></td<>	35.11 0.91 8.64 -0.96 6.72 -3.27 2.28	8.64 -0.96 6.72 -3.27	6.72 -3.27	-3.27		2.28	-	7.47	6.02	1.86	6.65	-1.48	6.32	-2.02	4.38	16.63	
8.37 6.80 2.10 7.47 -1.67 7.00 -2.28 4.96 8.82 7.17 2.22 7.87 -1.67 7.00 -2.28 4.96 8.82 7.17 2.22 7.87 -1.76 7.46 2.40 5.52 9.18 7.46 2.31 8.19 -1.73 2.60 5.44 1 7.16 7.46 2.31 8.19 -1.43 6.06 -5.44 1 7.16 7.17 2.20 1.43 6.06 -1.65 -4.4 2 2.16 0.19 -1.02 1.59 -0.26 -5.44 2 2.18 0.26 1.91 -0.20 1.99 -0.27 -0.59	35.99 0.94 8.84 -0.99 6.87 -3.39 2.35	8.84 -0.99 6.87 -3.39	6.87 -3.39	-3.39		2.35	2	7.82	6.35	1.96	6.97	-1.56	6.62	-2.13	4.83	17.43	
8.82 7.17 2.22 7.87 -1.76 7.46 -2.40 -5.22 9.18 7.46 2.31 8.19 -1.83 7.77 -2.60 -5.44 1 7.16 5.22 1.83 7.77 -2.60 -5.44 1 7.16 5.22 1.81 -1.63 7.77 -2.60 -5.44 1 7.16 5.22 1.81 -0.13 7.77 -2.60 -5.44 2 2.18 0.26 1.81 -0.20 1.89 -0.27 -0.69 2 1.81 -0.20 1.89 -0.27 -0.69 -0.84	38.07 0.99 9.35 -1.05 7.26 -3.59 2.48	9.35 -1.05 7.26 -3.59	7.26 -3.59	-3.59		2.48	en	8.37	6.80	2.10	7.47	-1.67	7.09	-2.28	4.96	18.67	
9.18 7.46 2.31 8.19 -1.83 7.77 -2.60 -5.44 1 7.16 5.82 1.80 6.39 -1.43 6.06 -1.96 -4.24 2.18 0.81 0.25 1.81 -0.20 1.86 -0.59	38.74 1.04 9.76 -1.09 7.58 -3.74 2.59	9.76 -1.09 7.58 -3.74	7.58 -3.74	-3.74		2.59	4	8.82	71.17	2.22	7.87	-1.78	7.46	-2.40	-5.22	19.66	
1 7.16 5.82 1.80 6.39 -1.43 6.06 -1.96 -4.24 - 2.18 0.81 0.25 1.91 -0.20 1.89 -0.27 -0.59	41.12 1.07 10.10 -1.13 7.84 -3.87 2.68	10.10 -1.13 7.84 -3.87	-1.13 7.84 -3.87	-3.87		2.68	5	9.18	7.46	2.31	8.19	-1.83	77.7	-2.50	-5.44	20.48	
2.18 0.81 0.25 1.91 -0.20 1.89 -0.27 -0.59	48.87 1.27 12.00 -1.34 9.32 -4.60 3.19	12.00 -1.34 9.32 -4.60	-1.34 9.32 4.60	4.60		3.19	Roof 1	7.16	5.82	1.80	6.39	-1.43	6.06	-1.95	4.24	15.97	
	7.39 0.06 3.06 -0.06 2.93 2.00 0.15	3.06 -0.06 2.93 2.00	2.93 2.00	2.00		0.15	Top	2.18	0.81	0.25	1.91	-0.20	1.89	-0.27	-0.59	4.77	

Table AF.3, Wind Case II

AV1-X1

43

-0.55

AV1-X1

oor Level

0.0

0.0

5		1																	
AV4-X1	6.17	11.99	12.57	13.46	14.17	14.76	11.51	3.51				AV4-X1	0.25	0.48	0.51	0.54	0.57	0.60	0.47
AV4-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				AV4-Y1	-1.74	-3.29	-3.47	-3.72	-3.91	4.08	-3.18
AV3-Y2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			ements (Kip)	AV3-Y2	-0.80	-1.51	-1.60	-1.71	-1.80	-1.88	-1.46
AV3-X1	2.54	4.84	5.18	5.55	5.84	6.08	4.74	1.45		ide	al Resisting El	AV3-X1	-0.11	-0.20	-0.21	-0.23	-0.24	-0.25	-0.20
AV3-Y1	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00		ular to Short S	nent in Later	AV3-Y1	-0.58	-1.11	-1.17	-1.25	-1.32	-1.37	-1.07
AV2-X1	2.47	4.80	5.03	5.38	5.67	5.91	4.61	1.40		nd Perpendic	orsion Compo	AV2-X1	0.10	0.19	0.20	0.22	0.23	0.24	0.19
AV2-Y1	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00		Wi	Wind Load To	AV2-Y1	0.74	1.40	1.47	1.58	1.66	1.73	1.35
AV1-Y1	00.0	00.0	00.0	00.0	00'0	00.0	00.0	00.0				AV1-Y1	2.38	4.52	4.76	5.10	5.37	5.60	4.37
AV1-X1	3.12	6.07	6.36	6.81	71.17	7.47	5.83	1.78				AV1-X1	-0.25	-0.47	-0.50	-0.53	-0.56	-0.58	-0.46
	0	-	2	en	4	5	Roof 1	Top			Floor Level		0	1	2	e	4	9	Roof 1
	AV1-Y1 AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	AV1-X1 AV2-Y1 AV2-X1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00	AV1-X1 AV1-Y1 AV2-Y1 AV2-Y1 AV3-Y1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.48 0.00 0.00 8.07 0.07 0.00 0.00 4.80 0.00 2.44 0.00 0.00	AV1-X1 AV1-Y1 AV2-Y1 AV3-Y1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 6.07 0.00 0.00 2.847 0.00 2.64 0.00 0.00 6.07 6.00 0.00 5.03 0.00 5.63 0.00 0.00	AV1-X1 AV1-Y1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.47 0.00 0.00 3.12 0.00 0.00 2.47 0.00 2.47 0.00 0.00 6.07 0.00 0.00 4.80 0.00 4.94 0.00 6.38 0.00 0.00 5.38 0.00 5.18 0.00 0.00 6.81 0.00 0.00 5.38 0.00 5.56 0.00 0.00	AV1-X1 AV1-Y1 AV2-Y1 AV3-X1 AV3-Y2 AV4-Y1 3/12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.44 0.00 0.00 6.07 0.00 0.00 2.48 0.00 0.00 0.00 6.07 0.00 0.00 5.03 0.00 2.18 0.00 0.00 6.81 0.00 0.00 5.33 0.00 5.56 0.00 0.00 7.17 0.00 0.00 5.67 0.00 0.00 0.00	AV1-X1 AV1-Y1 AV2-Y1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.44 0.00 0.00 6.07 0.00 0.00 2.48 0.00 0.00 0.00 6.07 0.00 0.00 5.03 0.00 5.18 0.00 0.00 6.81 0.00 0.00 5.03 0.00 5.58 0.00 0.00 7.17 0.00 0.00 5.91 0.00 5.91 0.00 0.00 7.47 0.00 0.00 5.91 0.00 5.91 0.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1<	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X1 AV3-X1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1<	AV1-X1 AV2-Y1 AV2-X1 AV2-X1 AV2-X1 AV2-X1 AV2-X1 AV2-Y1 AV2-Y1<	AV1-X1 AV2-V1 AV2-X1 AV2-X1 AV2-X1 AV2-X1 AV2-Y1 AV2-X1 AV2-Y1 AV2-Y1<	AV1-X1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y2 AV4-Y1 3.12 0.00 0.00 2.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.49 0.00 0.00 0.00 6.07 0.00 0.00 5.03 0.00 5.18 0.00 0.00 6.31 0.00 5.03 0.00 5.67 0.00 0.00 10.00 717 0.00 0.00 5.73 0.00 5.44 0.00 0.00 717 0.00 0.00 5.67 0.00 5.64 0.00 0.00 747 0.00 0.00 5.67 0.00 6.00 0.00 5.9 0.00 0.00 5.61 0.00 0.00 5.61 0.00 0.00 5.61 0.00 0.00 5.61 0.00 0.00 5.61 0.00 0.00 5.61 5.61 0.00 5.61 0.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00	AV1-X1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y2 AV4-Y1 3.12 0.00 0.00 2.00 0.00 </td <td>AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.49 0.00 0.00 0.00 6.07 0.00 0.00 5.03 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 5.44 0.00 0.00 5.83 0.00 5.67 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 4.74 0.00 0.00 5.83 0.00 0.00 4.61 0.00 1.45 0.00 0.00 5.83 0.00 0.00 4.76 0.00 0.00 1.47 0.00 1.47 7.77 0.00 0.00</td> <td>AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X2 AV4-Y1 8.12 0.00 0.00 2.47 0.00 2.00 0.00</td> <td>AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.87 0.00 2.00 0.00</td> <td>AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X2 AV4-Y1 3.12 0.00 0.00 2.87 0.00 2.00 0.00</td>	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.47 0.00 2.00 0.00 0.00 0.00 6.07 0.00 0.00 2.47 0.00 2.49 0.00 0.00 0.00 6.07 0.00 0.00 5.03 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 5.44 0.00 0.00 5.83 0.00 5.67 0.00 5.44 0.00 0.00 7.17 0.00 0.00 5.67 0.00 4.74 0.00 0.00 5.83 0.00 0.00 4.61 0.00 1.45 0.00 0.00 5.83 0.00 0.00 4.76 0.00 0.00 1.47 0.00 1.47 7.77 0.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X2 AV4-Y1 8.12 0.00 0.00 2.47 0.00 2.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-Y2 AV4-Y1 3.12 0.00 0.00 2.87 0.00 2.00 0.00	AV1-X1 AV2-Y1 AV2-X1 AV3-X1 AV3-X2 AV4-Y1 3.12 0.00 0.00 2.87 0.00 2.00 0.00

0.06

-0.44

-0.20

-0.03

-0.15

0.03

0.19

0.61

-0.14

d

Floor Level			Mind Load D	Mind Perpendicu	Wind Load Diract Communant in Lateral Resisting Flaments (Kin)	lde Resisting Fly	ements (Kin)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	0.00	8.64	11.07	0.00	5.40	0.00	5.40	4.78	0.00
٢	0.00	16.68	21.37	0.00	10.42	0.00	10.42	9.23	0.00
2	00.00	17.09	21.89	00.0	10.68	0.00	10.68	9.46	0.00
9	0.00	18.08	23.16	0.00	11.30	0.00	11.30	10.01	0.00
4	0.00	18.87	24.18	00:0	11.79	0.00	11.79	10.45	0.00
2	00.0	19.53	25.02	0.00	12.20	0.00	12.20	10.81	0.00
Roof 1	00.0	23.21	29.73	00.0	14.50	00.0	14.50	12.85	0.00
Top	0.00	4.08	5.22	0.00	2.55	0.00	2.55	2.26	0.00
			Wi	nd Perpendicu	Wind Perpendicular to Long Side	ide			
Floor Level			Wind Load To	orsion Compo	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	al Resisting E	lements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.75	7.22	2.23	0.31	-1.77	-0.32	-2.42	-5.25	0.77
F	-1.68	16.04	4.96	0.69	3.94	-0.72	-5.38	-11.68	1.71
2	-1.72	16.48	5.10	0.70	4.05	-0.74	-5.53	-12.00	1.76
9	-1.82	17.44	5.39	0.74	4.28	-0.78	-5.85	-12.70	1.86
4	-1.90	18.20	5.63	87.0	74.47	-0.82	-6.10	-13.25	1.94
ۍ	-1.97	18.83	5.82	08.0	4.82	-0.85	-6.32	-13.71	2.01
Roof 1	-2.34	22.38	6.92	0.96	-5.50	-1.01	-7.51	-16.30	2.39
Top	-0.41	0.96	0.32	0.04	-0.26	-0.05	-0.35	-0.78	0.11
			Wind Pe	rpendicular to	Wind Perpendicular to Long Side and Short	nd Short			
Floor Level			Total \	Wind Load in	Total Wind Load in Lateral Resisting Elements (Kip)	ting Elements	s (Kip)		
	1X-1VA	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	2.12	18.24	14.04	2.88	3.04	2.11	2.18	-2.20	7.19
Ļ	3.92	37.24	27.73	5.68	2:37	4.02	3.53	-5.74	14.19
2	4.14	38.34	28.46	5.93	5.46	4.22	3.55	-6.01	14.83
0	4.46	40.63	30.13	6.35	5.76	4.53	3.74	-6.41	15.86
4	4.71	42.45	31.47	6.68	6.00	4.78	3.88	-6.72	16.69
2	4.92	43.96	32.57	6.95	6.20	4.98	4.01	-6.98	17.37
Roof 1	3.03	49.95	38.00	5.75	7.93	3.54	5.53	-6.63	14.37
Top	1.23	5.65	5.73	1.48	2.14	1.37	2.00	1.06	3.69

Table AF.4, Wind Case IV

		Maximum V	Vind Base Sh	ear in Lateral	Resisting Ele	ments (Kip)		
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
76.49	325.00	304.42	63.85	126.60	63.35	121.65	84.03	159.59
	Ma	ximum Wind	Base Shear ir	n Lateral Resi	sting Element	s (Kip/ft Leng	th)	
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
7.40	15.42	11.27	7.82	9.62	7.53	9.24	7.20	7.82
	•		•	•				
	Ma	ximum Overt	urning Momer	nt Shear in La	teral Resisting	g Elements (K	(ip)	
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
3822.4	16608.2	15713.7	3190.7	6495.6	3165.7	6231.1	4251.5	7974.7

Table AF.5, Maximum Element Base Shear and Overturning Moment

	haison Ng	3-9-0					Irreg	ularity .	Analysia	
	La	tenal Resistio	2		, A 2.	A-W/level.	(Kip)			
		Member	0,1	1,2	2,3	3,4	4,5	5, Roof	Roofl,7	ap.
		AVI-x1	10.41	0.49	0.77	0.62	0.51	2.82	6.94	
		AV1-Y1	43.63	1.13	1.60	2.07	1.71	9.64	\$1.69	
		AV2-YI	40.31	1.01	2.40	1.91	1.58	8.90	46.25	
		AY2-X1	8.69	0.42	0.65	0.52	0.43	2.35	5.80	
		AV3-YI	16.69	0.34	0,49	0.79	0.65	3.68	19.12	
		Av3-xl	8.62	0.41	0.64	0.51	0.42	2.33	5.75	
		AV3- Y2	16.02	0.37	0.95	0,76	0.63	3.53	18.34	
		AV4 - Y1	10.97	0.21	0.65	0.51	0.43	2.41	12.51	
		Av4-x1	21.71	1.04	1.62	1.29	1.07	5.88	14,49	
CUNAMPA	I _c ,	r,xx = terr	dees 3 /12				7.44 = 8 X.444 = 4.	- (0.75 + .5 ″	0.5+1/2)	٤
ĸ							964t : 9	+++ - 2(0 +++ - 3,5	0.75 + 0.5 + 1 5″	K2)
	* 5	iee excel cal	culations (Story dri	ifx) on					
	t	ollowing pay	9e							
			,							
1								,		
	Dri	fi Limit =	H/400 ,	per AI	SC 7-05	Section	CC.1.)	ζ		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 4101		ζ		
	Dr	47 Limit = ifI Limit(h=14 ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 4100	(22.1.)	C		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 4101	(22.1.)	¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	Section		¢		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	Section		¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	Sec tion		¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	Sec +100		¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	Sec +100	(22.1.)	¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	500 +100	(22.1.)	¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		¢.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	ifI Limit(h=14) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	€) = 4(12)/	400 = 0.4	2"	580 +104		k.		
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"			k.		
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"					
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"			k k		
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"					
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"					
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"				,	
	Dr	€) = 4(12)/ 6') = 16(12)/	400 = 0.4	2"				,	

Δdrift, story (in) ^{[2] [3]}	1,, Top	0.0028	0.0024	0.0010	0.0047	0.0037	0.0042	0.0035	0.0035	0.00075
Δ _{drift} , stor	0, 1	0.0062	0.0031	0.0013	0.010	0.0048	0.0095	0.0046	0.0045	0.0017
_{evel} (Kip)	1,, Top	6.94	51.69	46.25	5.80	19.12	5.75	18.34	12.51	14.49
∆P _{max-w, level} (Kip)	0, 1	10.41	43.63	40.31	8.69	16.69	8.62	16.02	10.97	21.71
Icr / Igross		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
l _{conc, xx} (in ⁴)	[2]	317771	2697046	5668704	156865	657385	171398	657385	457333	2449146
Danth (in)		124.00	252.94	324.00	98.00	158.00	100.94	158.00	140.00	244.94
Thickness	(in)	8	8	8	8	8	8	8	8	8
Lateral Resisting	Member	1X-1VA	۲۷1-۲1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1

	C. Irregularity 1) Check for			hragm di	scontinung 1	rreg.		
	Floor Type	Re-entran	+ Corners	Dime	nt Corner	Gross	Area	
	A	197,51	73.59	X 28.00	40.83	(fx') 25785.	(fxL) 62 1929.76	
	B	225.51	115,43	28.00	2	26440		
	c	225.51	115.43	2	2	26440		
'n	Floor Type	e <u>ke-entr</u>	ant Corner	Extension	Percentag	e	Void Perce	ntage
TAMPAD"	A	25/197.51	X = 100 = 14.2%	40.83/	73.59+100 =	55.5%	1929.76/25785	.62 = 100 = 7.5%
X	В		+ 100 = 0.9%		3+100 = 1.79	1000	2053.77/26440*	
	L c	2/25.51	100 = 0.9%		5 = 100 = 1.79		786.43 /26440 +1	00 = 3.0%
	*** Due to c	plane offse	lateral force	e resistin	g elements			
	*** Due to c out-of- ** * Non para Increase in f	ontinuity of plane offset lillel systems corces due to 2-05 § 12.3.3,	lateral force t irreg irreg does horizontal - 4	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in f per ASC E7 2) check so K~1/L ³	ontinuity of plane offse illel systems forces due to 1-05 § 12.3.3.	lateral force t irreg irreg does horizoutal - 4 Weight Irr	e resistion on lt exis forces is	g elements t not requir	there	e are no	•
	*** Due to c out-of- ** * Non para Increase in f per ASC E7 2) Check So	ontinuity of plane offse illel systems forces due to -05 \$ 12.3.3. ft story and Height (fr)	lateral force t irreg irreg does horizoutal - 4 weight Irr	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in f per ASC E7 2) check So K ~ 1/L ³ Story	ontinuity of plane offset illel systems forces due to 1-05 § 12.3.3. ft story and Height (fx) 16	lateral force t irreg irreg does horizoutal - 4 weight Irr K 0.00024	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in f per ASC E7 2) check so K ~ 1/L ³ Story	ontinuity of plane offse illel systems forces due to -05 \$ 12.3.3. ft story and Height (fr)	lateral force t irreg irreg does horizoutal - 4 weight Irr	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in 4 per ASC E7 2) Check So $K \sim 1/L^3$ Story 1 2 3 4	ontinuity of plane offse illel systems iorces due to -05 \$ 12.3.3. ft stay and Height (fx) 14 14 14	lateral force irreg does horizoutal - 4 weight Irr 0.00024 0.00036 0.00036 0.00036	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in 4 per ASC E7 2) check so $K \sim 1/L^3$ Story 1 2 3 4 5	ontinuity of plane offse illel systems forces due to -05 \$ 12.3.3. ft story and Height (fr) 14 14 14 14	lateral force irreg does horizoutal - 4 weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036	e resistion on lt exis forces is	g elements t not requir	there	e are no	
	*** Due to c out-of- ** * Non para Increase in 4 per ASC E7 2) check so $K \sim 1/L^3$ Story 1 2 3 4	ontinuity of plane offse illel systems iorces due to -05 \$ 12.3.3. ft stay and Height (fx) 14 14 14	lateral force irreg does horizoutal - 4 weight Irr 0.00024 0.00036 0.00036 0.00036	e resistion on lt exis forces is	g elements t not requir	there	e are no	

	Thaison Nguyen Irregularity Analysis	7
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_OPAIWA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
R	[10] Using effective floor weight determined in seismic analysis. Only the first story exper. Soft story irreg, due to ki/Kini < 80%.	
	Extreme soft story irreg, doesn't exist in any story, since Ki/Ki+1 > 70%	
	Weight irreg, doesn't exist because Weff, J/Weff, i £ 150%	
	In force increase or modifications are required, per ASCET-05 Table 12:3-2, \$12.3.3.4	
	Drift Limit Factor = 0.015 L , per ASCE 7-05 Table 12.12-1	

Appendix G: Lateral Spot Check/Design

Thaison Ngayen Lateral Spot check / Design 1/4 Controlling Lateral Load : Wind Load Combination: 1.20+ L + 0.5 L + 1.6W ** > Design lateral force resisting member w/ maximum overturning and shear Member w/ Max Overturning and shear : AVI-YI Mu, max = 1.6 (16608.2), Using value calculated in Irregularity Analysis - Irregularity and Wind Mu, max = 26573.1 Kip + ft Vaymax = 1.6 (325) , History value calculated in Irregularity Analysis - Irregularity and Wind CIMINARY Vu, max =. 520 Kip A. Classify Shear Wall design L/W = 86/21.08 L/W. = 4.08 > 3 ; Slender / Flexural behavior per Reinforced Conc. Mech. & Design by James K. Wright , James G. Mac Gregor \$18-5 pp.937 L/T = 86/(8/12) L/T. = 129 B. Design (Flexural) *** Assume #8 flexural reinforcement , #4 shear reinforcement f' = 3000 psi a= As, to+ fy fy = 60 Ksi b = 5 0.85426 a= 11A. (60) · As = 0.79 (2) = 1.58 in2, (2) #8 per tow 0.85(3)(8) a= 2.94 nA; *** Assume \$ = 0.9, where Es 20.005 ** x Initially assume no top reinf. d = 21.08(12) - 0.75-0.5-0.5 - (n-1) 2 Sc $M_{u} = \emptyset A_{s,roy} f_{u} (d - \frac{\alpha_{2}}{2})$ $M_{u} = n A_{s} (d - \frac{\alpha_{2}}{2})$ Sc = Space bow bars (O.C.) n = # of Rows Øfy 5905.1 = nAs [[251.21-0.5hs+0.55c] - 1.47nAs] d = 251.21 - (n-1) Sc 5905,1 = nA, {[251.21+0.55c] - [0.55c+1.47A,]n} 5905.1 = 1.58n 2[251.21+0.55] - [0.55 + 1.47(1.58)]n} 5905.1 = (396.9 + 0.795)n - (0.795 + 3.67)n2 nmax = 21.08(6)-1.75 +1 a, x + b, x + c, = 0 a, = -0,7952 - 3.67 Sc Mmax = 124.73 + 1 b, = 396.9 + 0.79 Sc S. 61= - 5905.1

	Thaison Nguyen	Lateral Spot Check/Design
	<u>_5c _ 2"</u>	
	a1=-0.79(6)-3.67	nmax = 63 rows
11	a, = - 8.41	
	6, = 396,9+0.79(6)	a = 2.94(21)(1.58)
	6. = 401.64	a = 97.5"
	h = 20.2 $h = 21 \text{ rows} \leq h_{max}$	
	1997 - 19 19 19	$d = \frac{1}{251.21} - \frac{(21-1)(2)}{2}$
	5	2
5		d = 231.21"
"DAMPAD"	5, = 3.5"	
W		
R	a.= -6.44	hmax = 35 rows
	6 = 399.25	
	n = 24.3	a = 2.94 (25)(1.58)
	h = 25 rows ≤ nmax	a = 116.1"
	0.5689	
	Pmin, thermal/cracks control = 0.0018	d = 251.21 - (24)(3.5)
	P =) 3VF_ /f. = 0.0033 ACI 318-11 \$10.5,1	d = 209.21"
	Ps, min = { 3VF2 /fy = 0.0033, ACI 318-11 \$10.5.1 200/fy flexumenbers	L = a/0.85
	ma)	Es, extreme = 0.003 (251.21 - 136.59)
	Max rebar spacing shall	136,59
	be 18", per ACI 318-11 \$7,12.2.2	Es, carrene = 0,00252 40,005,
	→ P = 2(0.74)/18 = 0.087, controlling	can't use 0=0.9
	min, reinf.	
	naid = additional rows of (1) #8	
10	to satisfy controlling min. reinf.	1
	nass = [251.21 - 2(25-1)(3.5) - 2(1.75)]/18 - 1	
	nad = 79.71/18 -1	
	hadd 4 , assumed to not contribute to	
	Strength.	40 I
	Determine As, min to ach. 0=0.9	
	201	E, = 0.003 (d-c)
	$0.85f'_{c}ab + A_{s,min} \xi_{s} \xi_{s} = A_{s}f_{y}$ $0.85f'_{c}\beta_{s}bc^{2} + \Lambda^{A}_{s}(0.003X(d-1))\xi_{s} = A_{s}f_{y}$	<i>c</i>
	0.85(3)(8)(94.2) + n'(1.58)(0.003) = 39.5(60)	0.005 C = 0.00 3(d - C)
18. 1	(44.2-1.75n')E	$C = \frac{3}{8} d_{max}$
	153868.9 + 12948.7 n' - 240.6 n' = 2370	- 1
	-240.6 n + 12948.7 n + 151498.9 = 0	C = 0.375 (251,21)
	n'= 25 rows	C = 94.2"
	Asimin = 25(1.58)	$d' = \frac{(n'-1)s_2}{2} + 1.75$
	$A_{symin} = 25(1.58)$ $A_{symin} = 39.5$ in ²	
		d'= 0.552n'-0.552+1.75 d'= 1.75n'
		d'= 1.75 n'

	Thaison Nguyen		Lateral Spot Check/Design 3/
CIVERNA	Use 25 nows of (2) end of the flexing 3.5"0.C. See drawing on for see arrangement (1) D_{16} 16 16 10	2 416.3 444.2 20 Rebar) 2 416.3 444.2 20 44 59 72 inforcements are (2)#4 21) 5	$\sum_{s=1}^{2} \frac{0.003}{94.2} (94.2 - 1.75.25)$ $\sum_{s=1}^{2} \frac{0.003}{94.2} (209.21 - 1.75.25)$ $\sum_{s=1}^{2} \frac{0.003}{10.0016} < 0.002 \text{ , rop reinform doesn't yield.}$ $\sum_{s=1}^{2} \frac{0.003}{94.2} (209.21 - 94.2)$ $\frac{1}{94.2}$ $\sum_{s=1}^{2} \frac{0.0037}{0.0021} \text{ , yields.}$ $\sum_{s=1}^{2} \frac{109.9}{10.3} \text{ , x}$
	$A_{\mu} = 0.2(2) = 0.4 \text{ in}^{2}$ $S = A_{\mu}(f_{\mu}) \frac{d}{V_{S}}$ S = 0.4(60)(209.21)/(100) $S \approx 10^{10}$	465)	\rightarrow

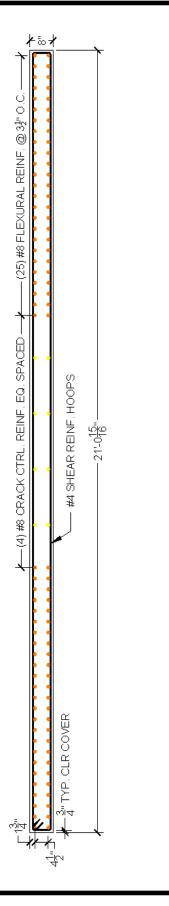
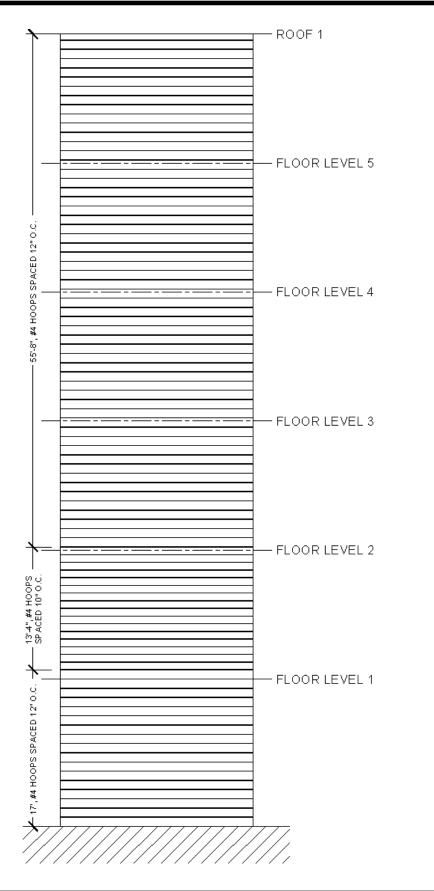



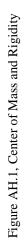
Figure AG.1, Reinforcement

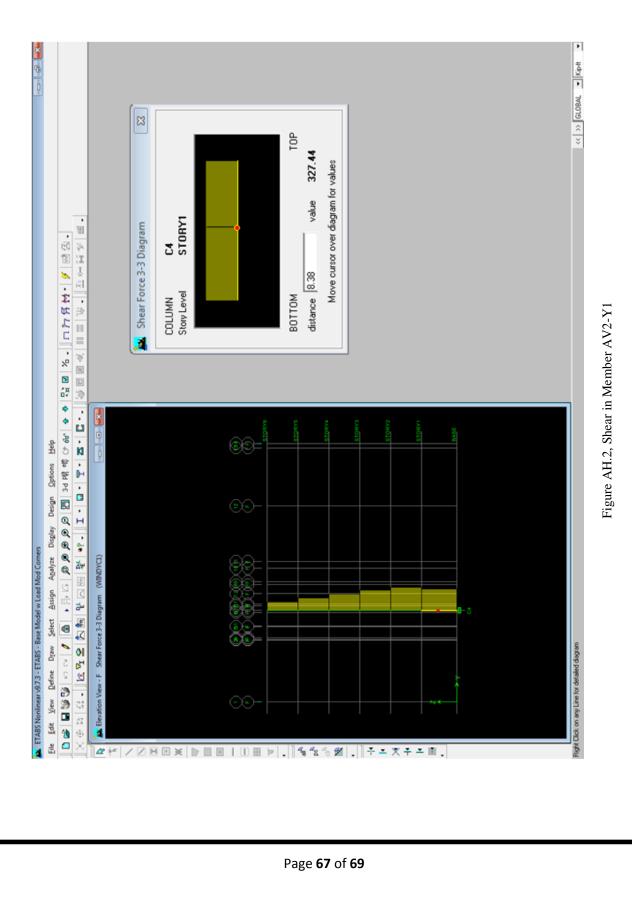
	Thaison Nguyen		Lateral Spot Check/Design	4/4
	1) Determine when s	= 12 "		
	$V_s = A_r(f_r)d/s$			
	V _{tot,u} = (Vs + V2)0.75 V _{tot,u} = [0,4(60)(209, V _{rot,u} = 451,29 Kip	21)/12 + 183.3]0.75 , where s can equal 12"		
	** * Use S= 12" whi	en X < d , for thermal and crack control.		
JAMIMA	* See drawings on	following page see shear ,	reinf, arrangement.	
	· · · ·			
	•			
		•		
	-			
	-			

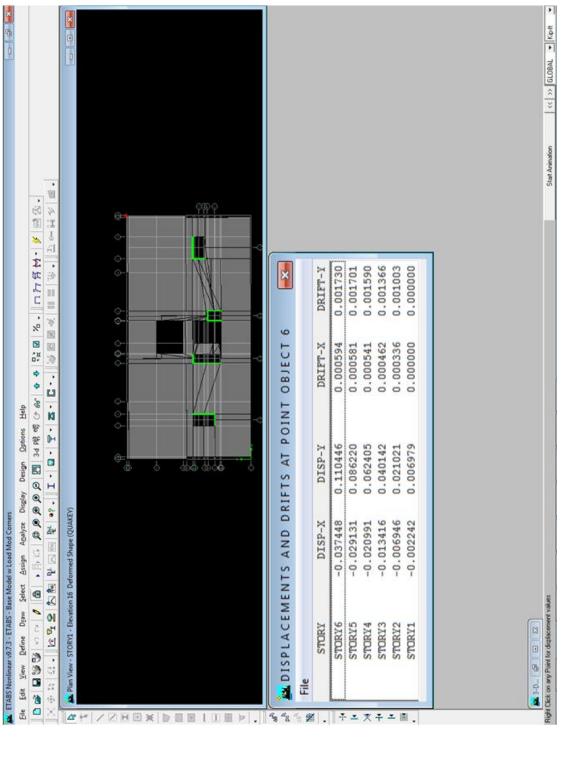
Figure AG.1, Shear Reinforcement Spacing

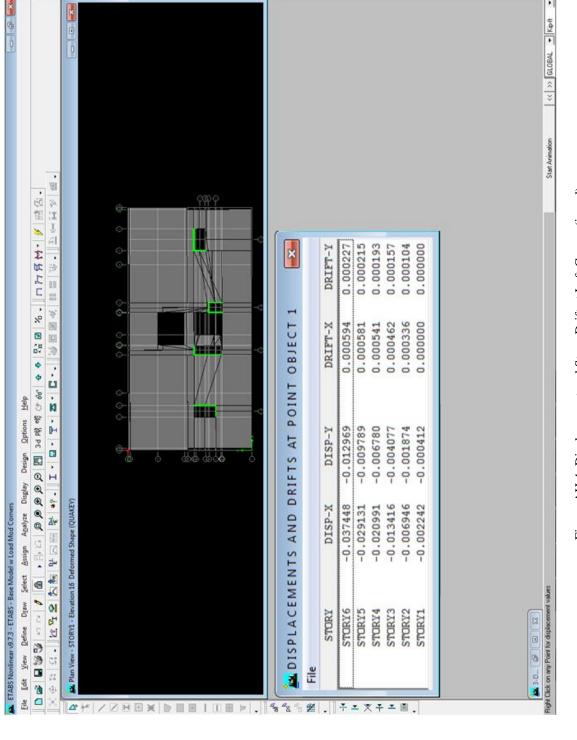
Appendix H: Structural Computer Modeling

Modeling Assumptions


- 1. All shear walls are monolithically cast
- 2. Model all shear walls as frame elements in-lieu of 2-D elements w/ mesh
- 3. Fixed base connection
- 4. Rigid floor diaphragm
- 5. No MEP openings in floor slab or shear walls


Monolithically cast concrete shear wall are modeled by modifying the moment of inertia in the strong direction. The modifying factor was determined by dividing the monolithic shear wall's moment of inertia by the individual/non-monolithic shear wall's moment of inertia. Moment of inertia in the weak direction was left to be zero. See the excel spread sheet below for the modification factors to the shear wall's moment of inertia in the strong direction.


Lateral Resisti	ng Element	Length	Thk	Area (in ²)	Lo	cal	Glo	bal
Designation	Resisting Direction	(ft)	(in)		X _{cm} (in)	Y _{cm} (in)	X _{cm} (in)	Y _{cm} (in)
AV1-X1	Х	10.333		992.00	62.00	4.00	106.29	86,18
AV1-Y1	Y	21.078		2023.50	128.00	126.47	100.29	00.10
AV2-Y1	Y	27.000		2592.00	4.00	162.00	16.31	198.69
AV2-X1	Х	8.167		784.00	57.00	320.00	10.51	190.09
AV3-Y1	Y	13.167	8	1264.00	4.00	79.00		
AV3-X1	Х	8.411		807.50	58.47	154.00	58.47	97.16
AV3-Y2	Y	13.167		1264.00	112.94	79.00		
AV4-Y1	Y	11.667		1120.00	4.00	70.00	84.47	112.00
AV4-X1	Х	20.411		1959.50	130.47	136.00	04.47	112.00


Lateral Resistin	ng Element	l _{indiv}	Iflange	A	d ²	I _{syst}	Stiffness
Designation	Resisting Direction			Indiv	Flange		Factor
AV1-X1	Х	1271083	10792	1945751	953884	4181510	3.29
AV1-Y1	Y	10788186	5291	3284418	6699617	20777512	1.93
AV2-Y1	Y	22674816	4181	3489606	11537065	37705669	1.66
AV2-X1	Х	627461	13824	1298174	392658	2332117	3.72
AV3-Y1	Y	2629541	2153	416709	1304570	4352973	1.66
AV3-X1	Х	685593	2247	0	7500183	8188024	11.94
AV3-Y2	Y	2629541	2153	416709	1304570	4352973	1.66
AV4-Y1	Y	1829333	10451	1975313	1129039	4944136	2.70
AV4-X1	Х	9796582	5973	4145600	90129	14038284	1.43

							Ļ				
							Cent	Center Mass Rigidity			
Story	Diaphragm	MassX	MassY	XCM	YCM	CumMassX CumMassY	CumMassY	XCCM	YCCM	XCR	YCR
STORY6	0	101.0603	101.0603	114.753	58.442	101.0603	101.0603	114.753	58.442	89.191	47.780
STORY5	5	97.6140	97.6140	114.787	58.897	198.6743	198.6743	114.770	58.665	89.469	47.784
STORY4	5	98.0577	98.0577	114.787	58.897	296.7320	296.7320	114.776	58.742	89.936	47.791
STORY3	0	99.8325	99.8325	114.787	58.897	396.5645	396.5645	114.779	58.781	90.846	47.800
STORY2	01	101.6073	101.6073	114.787	58.897	498.1719	498.1719	114.780	58.804	92.885	47.811
STORY1	5	95.3270	95.3270	114.690	58.721	593.4988	593.4988	114.766	58.791	97.909	47.809

